当前位置:首页 » 操作系统 » kmp改进算法

kmp改进算法

发布时间: 2023-01-24 17:50:10

⑴ 模式p='abcaababc '的KMP算法和KMP,并改进算法的匹配过程!

求子串next[j]值的算法:
void GetNext(String T, int next[])
{ int j = 1, k = 0;
next[1] = 0;
while(j < len(T)){

if( k == 0 || T[j]==T[k])
{j++; k++; next[j]=k; }
else k = next[k];
}
}
KMP 算法的自然语言描述
设s为主串,t为模式串,设i为主串s当前比较字符的下标,j为模式串t当前比较字符的下标,令i和j的初值为pos和1。当si = tj时,i和j分别增1再继续比较;否则 i不变,j改变为next[j]值(即模式串右滑)后再继续比较。依次类推,直到出现下列两种情况之一:
一是 j退回到某个j=next[j]值时有si = tj ,则 i和j分别增1后再继续比较;
二是j退回到j=0时,令主串和子串的下标各增1,随后比较si和t1 。这样的循环过程一直进行到变量大于等于s的长度或变量j大于等于t的长度为止。
int KMPIndex(String S, int start,String T, int next[ ])
{
int i = start, j=1;

while ( i <= S[0] && j< T[0]) {
//不失配则继续比较后续字符
if (j == 0 || S [i] = = T[j] ) {i++; j++ }
//特点:S的i指针不回溯,而且从T的k位置开始匹配
else j=next[j];
}

if (j >= T[0]) return ( i-T(0) );
else return -1;
}

⑵ kmp算法的优化

KMP算法是可以被进一步优化的。
我们以一个例子来说明。譬如我们给的P字符串是“abcdaabcab”,经过KMP算法,应当得到“特征向量”如下表所示: 下标i 0 1 2 3 4 5 6 7 8 9 p(i) a b c d a a b c a b next[i] -1 0 0 0 0 1 1 2 3 1 但是,如果此时发现p(i) == p(k),那么应当将相应的next[i]的值更改为next[k]的值。经过优化后可以得到下面的表格: 下标i 0 1 2 3 4 5 6 7 8 9 p(i) a b c d a a b c a b next[i] -1 0 0 0 0 1 1 2 3 1 优化的next[i] -1 0 0 0 -1 1 0 0 3 0 (1)next[0]= -1 意义:任何串的第一个字符的模式值规定为-1。
(2)next[j]= -1 意义:模式串T中下标为j的字符,如果与首字符
相同,且j的前面的1—k个字符与开头的1—k
个字符不等(或者相等但T[k]==T[j])(1≤k<j)。
如:T=”abCabCad” 则 next[6]=-1,因T[3]=T[6]
(3)next[j]=k 意义:模式串T中下标为j的字符,如果j的前面k个
字符与开头的k个字符相等,且T[j] != T[k] (1≤k<j)。
即T[0]T[1]T[2]。。。T[k-1]==
T[j-k]T[j-k+1]T[j-k+2]…T[j-1]
且T[j] != T[k].(1≤k<j);
(4) next[j]=0 意义:除(1)(2)(3)的其他情况。
补充一个next[]生成代码: voidgetNext(constchar*pattern,intnext[]){next[0]=-1;intk=-1,j=0;while(pattern[j]!=''){while(k!=-1&&pattern[k]!=pattern[j])k=next[k];++j;++k;if(pattern[k]==pattern[j])next[j]=next[k];elsenext[j]=k;}} PROGRAMImpl_KMP;USESCRT;CONSTMAX_STRLEN=255;VARnext:array[1..MAX_STRLEN]ofinteger;str_s,str_t:string;int_i:integer;Procereget_next(t:string);Varj,k:integer;Beginj:=1;k:=0;whilej<Length(t)dobeginif(k=0)or(t[j]=t[k])thenbeginj:=j+1;k:=k+1;next[j]:=k;endelsek:=next[k];end;End;Functionindex(s:string;t:string):integer;Vari,j:integer;Beginget_next(t);index:=0;i:=1;j:=1;while(i<=Length(s))and(j<=Length(t))dobeginif(j=0)or(s[i]=t[j])thenbegini:=i+1;j:=j+1;endelsej:=next[j];ifj>Length(t)thenindex:=i-Length(t);end;End;BEGINClrScr;{清屏,可不要}Write('s=');Readln(str_s);Write('t=');Readln(str_t);int_i:=index(str_s,str_t);ifint_i<>0thenbeginWriteln('Found''',str_t,'''in''',str_s,'''at',int_i,'.');endelseWriteln('Cannotfind''',str_t,'''in',str_s,'''.');END.index函数用于模式匹配,t是模式串,s是原串。返回模式串的位置,找不到则返回0

⑶ kmp算法详解

KMP模式匹配算法
KMP算法是一种改进的字符串匹配算法,其关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的明[4]。
求得模式的特征向量之后,基于特征分析的快速模式匹配算法(KMP模式匹配算法)与朴素匹配算法类似,只是在每次匹配过程中发生某次失配时,不再单纯地把模式后移一位,而是根据当前字符的特征数来决定模式右移的位数[3]。
include "string. h"

#include<assert. h>

int KMPStrMatching(String T, String P, int. N, int startIndex)

{int lastIndex=T.strlen() -P.strlen();

if((1 astIndex- startIndex)<0)//若 startIndex过大,则无法匹配成功

return (-1);//指向P内部字符的游标

int i;//指向T内部字符的游标

int j=0;//指向P内部字符的游标

for(i= startIndex; i <T.strlen(); i++)

{while(P[j]!=T[i]&& j>0)

j=N[j-1];

if(P[j]==T[i])

j++;

if(j ==P.strlen())

return(1-j+1);//匹配成功,返回该T子串的开始位置

}

return (-1);

}

⑷ 关于KMP算法的说明有什么

(1)未改进的模式匹配算法的时间复杂度为O(nm),但在一般情况下,其实际的执行时间接近O(n+m),因此至今仍被采用。

(2)KMP算法仅当模式与主串之间存在许多“部分”匹配的情况下才显得比未改进的模式匹配快。

(2)KMP算法的最大特点是指示主串的指针不需要回溯,在整个匹配过程中,对主串仅需要从头至尾扫描一遍,这对处理存储在外存上的大文件是非常有效的。

⑸ KMP是什么意思

一种由Knuth(D.E.Knuth)、Morris(J.H.Morris)和Pratt(V.R.Pratt)三人设计的线性时间字符串匹配算法。这个算法不用计算变迁函数δ,匹配时间为Θ(n),只用到辅助函数π[1,m],它是在Θ(m)时间内,根据模式预先计算出来的。数组π使得我们可以按需要,“现场”有效的计算(在平摊意义上来说)变迁函数δ。粗略地说,对任意状态q=0,1,…,m和任意字符a∈Σ,π[q]的值包含了与a无关但在计算δ(q,a)时需要的信息。由于数组π只有m个元素,而δ有Θ(m∣Σ∣)个值,所以通过预先计算π而不是δ,使得时间减少了一个Σ因子。

⑹ 什么情况下,KMP算法的性能会退化为朴素匹配算法

(1)未改进的模式匹配算法的时间复杂度为O(nm),但在一般情况下,其实际的执行时间接近O(n+m),因此至今仍被采用。

(2)KMP算法仅当模式与主串之间存在许多“部分”匹配的情况下才显得比未改进的模式匹配快。

(2)KMP算法的最大特点是指示主串的指针不需要回溯,在整个匹配过程中,对主串仅需要从头至尾扫描一遍,这对处理存储在外存上的大文件是非常有效的。

(6)kmp改进算法扩展阅读:

KMP算法是三位学者在 Brute-Force算法的基础上同时提出的模式匹配的改进算法。Brute- Force算法在模式串中有多个字符和主串中的若干个连续字符比较都相等,但最后一个字符比较不相等时,主串的比较位置需要回退。KMP算法在上述情况下,主串位置不需要回退,从而可以大大提高效率。

如果模式P与目标T(或其子串)存在某种程度的相似,则认为匹配成功。常用的衡量字符串相似度的方法是根据一个串转换成另一个串所需的基本操作数目来确定。基本操作由字符串的插入、删除和替换来组成。

⑺ kmp算法的介绍

KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。

⑻ kmp算法什么意思

KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。
在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。
对于next[]数组的定义如下:
1) next[j] = -1 j = 0
2) next[j] = max(k): 0<k<j P[0...k-1]=P[j-k,j-1]
3) next[j] = 0 其他
如:
P a b a b a
j 0 1 2 3 4
next -1 0 0 1 2
即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]
因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

⑼ 关于KMP匹配中next[i]数组的改进算法问题

{ //求KMP算法中的next函数值,并存入数组next[] int i=1; next[1]=1.在程序中有字符串S和T,你用S[0]代表字符串的长度,但S是字符串,S

⑽ 【算法笔记】字符串匹配

BF 算法中的 BF 是 Brute Force 的缩写,中文叫作暴力匹配算法,也叫朴素匹配算法:

主串和模式串:
在字符串 A 中查找字符串 B,那字符串 A 就是主串,字符串 B 就是模式串。我们把主串的长度记作 n,模式串的长度记作 m

我们在主串中,检查起始位置分别是 0、1、2…n-m 且长度为 m 的 n-m+1 个子串,看有没有跟模式串匹配的。

BF 算法的时间复杂度是 O(n*m)

等价于

比如匹配Google 和Goo 是最好时间复杂度,匹配Google 和ble是匹配失败的最好时间复杂度。

KMP算法是一种改进的字符串匹配算法,由D.E.Knuth与J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特—莫里斯—普拉特算法。KMP算法主要分为两个步骤:字符串的自我匹配,目标串和模式串之间的匹配。

看来网上很多的文章,感觉很多的都没有说清楚,这里直接复制阮一峰的内容,讲的很清晰
内容来自 http://www.ruanyifeng.com/blog/

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

因为B与A不匹配,搜索词再往后移。

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

接着比较字符串和搜索词的下一个字符,还是相同。

直到字符串有一个字符,与搜索词对应的字符不相同为止。

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

因为 6 - 2 等于4,所以将搜索词向后移动4位。

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

因为空格与A不匹配,继续后移一位。

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

BM(Boyer-Moore)算法。它是一种非常高效的字符串匹配算法,有实验统计,它的性能是着名的KMP 算法的 3 到 4 倍。

BM 算法包含两部分,分别是坏字符规则(bad character rule)和好后缀规则(good suffix shift)

未完待续

参考文章:
字符串匹配的Boyer-Moore算法

热点内容
苹果手机备忘录怎么加密 发布:2024-05-19 18:57:57 浏览:15
光荣脚本 发布:2024-05-19 18:57:48 浏览:996
pythonjson字符串 发布:2024-05-19 18:51:43 浏览:253
什么是服务器厂商介绍 发布:2024-05-19 18:50:09 浏览:370
服务器网卡硬件型号怎么看 发布:2024-05-19 18:36:41 浏览:665
修改pve服务器ip 发布:2024-05-19 18:31:52 浏览:468
微信密码忘记了如何取出里面的钱 发布:2024-05-19 18:27:35 浏览:329
vs2005反编译 发布:2024-05-19 18:26:34 浏览:363
ug启动语言脚本 发布:2024-05-19 18:25:57 浏览:874
缓存服务器技术 发布:2024-05-19 18:25:56 浏览:885