免疫算法概述
❶ 免疫算法最优化问题交叉变异算子一般取多大
一般交叉和变异的概率是分开取的,而且要看目标函数究竟有多复杂,通常交叉算子的概率可以取0.7~0.9之间,如果采用实数编码,建议取大一点,变异算子主要取决于函数的局部最优解是不是非常多,如果是的话,可以将变异算子的概率取到0.3,通常是0.01~0.1的变异概率。到底取多少还是要看目标函数以及想要的收敛速度。
❷ 使用遗传算法和免疫算法的优化结果是否有差别
遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。 模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,将好精确化,用数字来表达。 神经网络是一种仿生计算方法,仿照生物体中信息的传递过程来进行数学计算。 这三种知识都是近40年兴起的新兴学科,主要应用在智能模糊控制上面。这三者可以结合起来应用。如用模糊数学些遗传算法的程序,优化神经网络,最后用神经网络控制飞行器或其他物体
❸ 什么是智能优化算法
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:
Step1:设置参数,初始化种群;
Step2:生成一组解,计算其适应值;
Step3:由个体最有适应着,通过比较得到群体最优适应值;
Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(3)免疫算法概述扩展阅读
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
❹ IA优化算法是什么
IA优化算法指的是免疫算法是模仿生物免疫机制,结合基因的进化机理,人工构造出的一种新型智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。
相比较于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)中不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。
免疫算法主要模块:
抗原识别与初始抗体产生。根据待优化问题的特点设计合适的抗体编码规则,并在此编码规则下利用问题的先验知识产生初始抗体种群。
抗体评价。对抗体的质量进行评价,评价准则主要为抗体亲和度和个体浓度,评价得出的优质抗体将进行进化免疫操作,劣质抗体将会被更新。
免疫操作。利用免疫选择、克隆、变异、克隆抑制、种群刷新等算子模拟生物免疫应答中的各种免疫操作,形成基于生物免疫系统克隆选择原理的进化规则和方法,实现对各种最优化问题的寻优搜索。