当前位置:首页 » 操作系统 » 写linux驱动

写linux驱动

发布时间: 2023-01-27 14:40:48

1. 如何在linux下写无线网卡的驱动

建议通过以下步骤在Linux下载无线网卡的驱动:

一、所需材料准备如下:

准备一台可以联网的电脑;

二、具体操作步骤如下:

因无线网卡的驱动安装和型号相关,不同型号的无线网卡安装、驱动下载有所差异。具体可联系网卡官网或售后。

先确认Linux使用的是何种版本,如:Redhat9.0、 Freda core5等。同时确认Linux使用的内核。

在确认无线网卡的具体型号后在进一步操作,以下以腾达w31系列无线网卡为例:

1、通过浏览器搜索Linux官方网站,按照提示选择linux系统驱动下载(型号5370);

2. 如何编写Linux 驱动程序

以装载和卸载模块为例:

1、首先输入代码

#include <linux/init.h>

#include <linux/mole.h>

3. linux驱动程序结构框架及工作原理分别是什么

一、Linux device driver 的概念x0dx0ax0dx0a系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能:x0dx0ax0dx0a1、对设备初始化和释放;x0dx0ax0dx0a2、把数据从内核传送到硬件和从硬件读取数据;x0dx0ax0dx0a3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据;x0dx0ax0dx0a4、检测和处理设备出现的错误。x0dx0ax0dx0a在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。x0dx0ax0dx0a已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。x0dx0ax0dx0a最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。x0dx0ax0dx0a二、实例剖析x0dx0ax0dx0a我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把下面的C代码输入机器,你就会获得一个真正的设备驱动程序。x0dx0ax0dx0a由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如 open,read,write,close?, 注意,不是fopen, fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:x0dx0ax0dx0aSTruct file_operatiONs {x0dx0ax0dx0aint (*seek) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*read) (struct inode * ,struct file *, char ,int);x0dx0ax0dx0aint (*write) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*readdir) (struct inode * ,struct file *, struct dirent * ,int);x0dx0ax0dx0aint (*select) (struct inode * ,struct file *, int ,select_table *);x0dx0ax0dx0aint (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);x0dx0ax0dx0aint (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);x0dx0ax0dx0aint (*open) (struct inode * ,struct file *);x0dx0ax0dx0aint (*release) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fsync) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fasync) (struct inode * ,struct file *,int);x0dx0ax0dx0aint (*check_media_change) (struct inode * ,struct file *);x0dx0ax0dx0aint (*revalidate) (dev_t dev);x0dx0ax0dx0a}x0dx0ax0dx0a这个结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。x0dx0ax0dx0a下面就开始写子程序。x0dx0ax0dx0a#include 基本的类型定义x0dx0ax0dx0a#include 文件系统使用相关的头文件x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0aunsigned int test_major = 0;x0dx0ax0dx0astatic int read_test(struct inode *inode,struct file *file,char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0aint left; 用户空间和内核空间x0dx0ax0dx0aif (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )x0dx0ax0dx0areturn -EFAULT;x0dx0ax0dx0afor(left = count ; left > 0 ; left--)x0dx0ax0dx0a{x0dx0ax0dx0a__put_user(1,buf,1);x0dx0ax0dx0abuf++;x0dx0ax0dx0a}x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0a这个函数是为read调用准备的。当调用read时,read_test()被调用,它把用户的缓冲区全部写1。buf 是read调用的一个参数。它是用户进程空间的一个地址。但是在read_test被调用时,系统进入核心态。所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。另外还有很多类似功能的函数。请参考,在向用户空间拷贝数据之前,必须验证buf是否可用。这就用到函数verify_area。为了验证BUF是否可以用。x0dx0ax0dx0astatic int write_test(struct inode *inode,struct file *file,const char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0astatic int open_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_INC_USE_COUNT; 模块计数加以,表示当前内核有个设备加载内核当中去x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0astatic void release_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_DEC_USE_COUNT;x0dx0ax0dx0a}x0dx0ax0dx0a这几个函数都是空操作。实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。x0dx0ax0dx0astruct file_operations test_fops = {?x0dx0ax0dx0aread_test,x0dx0ax0dx0awrite_test,x0dx0ax0dx0aopen_test,x0dx0ax0dx0arelease_test,x0dx0ax0dx0a};x0dx0ax0dx0a设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(moles),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。x0dx0ax0dx0aint init_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aint result;x0dx0ax0dx0aresult = register_chrdev(0, "test", &test_fops); 对设备操作的整个接口x0dx0ax0dx0aif (result < 0) {x0dx0ax0dx0aprintk(KERN_INFO "test: can't get major number\n");x0dx0ax0dx0areturn result;x0dx0ax0dx0a}x0dx0ax0dx0aif (test_major == 0) test_major = result; /* dynamic */x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0a在用insmod命令将编译好的模块调入内存时,init_mole 函数被调用。在这里,init_mole只做了一件事,就是向系统的字符设备表登记了一个字符设备。register_chrdev需要三个参数,参数一是希望获得的设备号,如果是零的话,系统将选择一个没有被占用的设备号返回。参数二是设备文件名,参数三用来登记驱动程序实际执行操作的函数的指针。x0dx0ax0dx0a如果登记成功,返回设备的主设备号,不成功,返回一个负值。x0dx0ax0dx0avoid cleanup_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aunregister_chrdev(test_major,"test");x0dx0ax0dx0a}x0dx0ax0dx0a在用rmmod卸载模块时,cleanup_mole函数被调用,它释放字符设备test在系统字符设备表中占有的表项。x0dx0ax0dx0a一个极其简单的字符设备可以说写好了,文件名就叫test.c吧。x0dx0ax0dx0a下面编译 :x0dx0ax0dx0a$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c _c表示输出制定名,自动生成.o文件x0dx0ax0dx0a得到文件test.o就是一个设备驱动程序。x0dx0ax0dx0a如果设备驱动程序有多个文件,把每个文件按上面的命令行编译,然后x0dx0ax0dx0ald ?-r ?file1.o ?file2.o ?-o ?molename。x0dx0ax0dx0a驱动程序已经编译好了,现在把它安装到系统中去。x0dx0ax0dx0a$ insmod ?_f ?test.ox0dx0ax0dx0a如果安装成功,在/proc/devices文件中就可以看到设备test,并可以看到它的主设备号。要卸载的话,运行 :x0dx0ax0dx0a$ rmmod testx0dx0ax0dx0a下一步要创建设备文件。x0dx0ax0dx0amknod /dev/test c major minorx0dx0ax0dx0ac 是指字符设备,major是主设备号,就是在/proc/devices里看到的。x0dx0ax0dx0a用shell命令x0dx0ax0dx0a$ cat /proc/devicesx0dx0ax0dx0a就可以获得主设备号,可以把上面的命令行加入你的shell script中去。x0dx0ax0dx0aminor是从设备号,设置成0就可以了。x0dx0ax0dx0a我们现在可以通过设备文件来访问我们的驱动程序。写一个小小的测试程序。x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0amain()x0dx0ax0dx0a{x0dx0ax0dx0aint testdev;x0dx0ax0dx0aint i;x0dx0ax0dx0achar buf[10];x0dx0ax0dx0atestdev = open("/dev/test",O_RDWR);x0dx0ax0dx0aif ( testdev == -1 )x0dx0ax0dx0a{x0dx0ax0dx0aprintf("Cann't open file \n");x0dx0ax0dx0aexit(0);x0dx0ax0dx0a}x0dx0ax0dx0aread(testdev,buf,10);x0dx0ax0dx0afor (i = 0; i < 10;i++)x0dx0ax0dx0aprintf("%d\n",buf[i]);x0dx0ax0dx0aclose(testdev);x0dx0ax0dx0a}x0dx0ax0dx0a编译运行,看看是不是打印出全1 x0dx0ax0dx0a以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。上述给出了一个简单的字符设备驱动编写的框架和原理,更为复杂的编写需要去认真研究LINUX内核的运行机制和具体的设备运行的机制等等。希望大家好好掌握LINUX设备驱动程序编写的方法。

4. 如何在Linux下写无线网卡的驱动

在Linux下载无线网卡的驱动,具体操作步骤如下

1、首先确定无线网卡型号,因驱动安装和型号是密切相关的,不同的型号,安装和下载驱动有所不同,但原理是一样的。以无线网卡型号:腾达w31系列,芯片为relteck 5370 为例;

5. 如何 编写 linux 驱动 程序

Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本人这几周来为实验室自行研制的一块多媒体卡编制了驱动程序,获得了一些经验,愿与Linux fans共享 一、Linux device driver 的概念系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件, 应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1.对设备初始化和释放。 2.把数据从内核传送到硬件和从硬件读取数据。 3.读取应用程序传送给设备文件的数据和回送应用程序请求的数据。 4.检测和处理设备出现的错误。 二、实例剖析我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。

6. 怎么写linux网卡驱动程序

1
方法一:
1:ethtool -i ethx
如:
linux:/mnt # ethtool -i eth1
driver: e1000e
version: 1.0.2-k2
firmware-version: 1.9-0
bus-info: 0000:0b:00.0
linux:/mnt # ethtool -i eth16
driver: igb
version: 2.1.0-k2
firmware-version: 1.4-1
bus-info: 0000:0a:00.0
linux:/mnt #
2:使用 modinfo igb 查看驱动信息
linux:~ # modinfo igb
filename: /lib/moles/2.6.32.12-0.7-default/kernel/drivers/net/igb/igb.ko
version: 5.2.5
license: GPL
description: Intel(R) Gigabit Ethernet Network Driver
author: Intel Corporation, <[email protected]>
srcversion: 0E80ABCD0117D822FE8B271
alias: pci:v00008086d000010D6sv*sd*bc*sc*i*
alias: pci:v00008086d000010A9sv*sd*bc*sc*i*
alias: pci:v00008086d000010A7sv*sd*bc*sc*i*
alias: pci:v00008086d000010E8sv*sd*bc*sc*i*
alias: pci:v00008086d00001526sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Dsv*sd*bc*sc*i*
alias: pci:v00008086d000010E7sv*sd*bc*sc*i*
alias: pci:v00008086d000010E6sv*sd*bc*sc*i*
alias: pci:v00008086d00001518sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Asv*sd*bc*sc*i*
alias: pci:v00008086d000010C9sv*sd*bc*sc*i*
alias: pci:v00008086d00000440sv*sd*bc*sc*i*
alias: pci:v00008086d0000043Csv*sd*bc*sc*i*
alias: pci:v00008086d0000043Asv*sd*bc*sc*i*
alias: pci:v00008086d00000438sv*sd*bc*sc*i*
alias: pci:v00008086d00001516sv*sd*bc*sc*i*
alias: pci:v00008086d00001511sv*sd*bc*sc*i*
alias: pci:v00008086d00001510sv*sd*bc*sc*i*
alias: pci:v00008086d00001527sv*sd*bc*sc*i*
alias: pci:v00008086d0000150Fsv*sd*bc*sc*i*
alias: pci:v00008086d0000150Esv*sd*bc*sc*i*
alias: pci:v00008086d00001524sv*sd*bc*sc*i*
alias: pci:v00008086d00001523sv*sd*bc*sc*i*
alias: pci:v00008086d00001522sv*sd*bc*sc*i*
alias: pci:v00008086d00001521sv*sd*bc*sc*i*
alias: pci:v00008086d00001539sv*sd*bc*sc*i*
alias: pci:v00008086d0000157Csv*sd*bc*sc*i*
alias: pci:v00008086d0000157Bsv*sd*bc*sc*i*
alias: pci:v00008086d00001538sv*sd*bc*sc*i*
alias: pci:v00008086d00001537sv*sd*bc*sc*i*
alias: pci:v00008086d00001536sv*sd*bc*sc*i*
alias: pci:v00008086d00001533sv*sd*bc*sc*i*
alias: pci:v00008086d00001F45sv*sd*bc*sc*i*
alias: pci:v00008086d00001F41sv*sd*bc*sc*i*
alias: pci:v00008086d00001F40sv*sd*bc*sc*i*
depends: hwmon,dca
supported: external
vermagic: 2.6.32.12-0.7-default SMP mod_unload modversions
parm: InterruptThrottleRate:Maximum interrupts per second, per vector, (max 100000), default 3=adaptive (array of int)
parm: IntMode:Change Interrupt Mode (0=Legacy, 1=MSI, 2=MSI-X), default 2 (array of int)
parm: Node:set the starting node to allocate memory on, default -1 (array of int)
parm: LLIPort:Low Latency Interrupt TCP Port (0-65535), default 0=off (array of int)
parm: LLIPush:Low Latency Interrupt on TCP Push flag (0,1), default 0=off (array of int)
parm: LLISize:Low Latency Interrupt on Packet Size (0-1500), default 0=off (array of int)
parm: RSS:Number of Receive-Side Scaling Descriptor Queues (0-8), default 1, 0=number of cpus (array of int)
parm: VMDQ:Number of Virtual Machine Device Queues: 0-1 = disable, 2-8 enable, default 0 (array of int)
parm: max_vfs:Number of Virtual Functions: 0 = disable, 1-7 enable, default 0 (array of int)
parm: MDD:Malicious Driver Detection (0/1), default 1 = enabled. Only available when max_vfs is greater than 0 (array of int)
parm: QueuePairs:Enable Tx/Rx queue pairs for interrupt handling (0,1), default 1=on (array of int)
parm: EEE:Enable/disable on parts that support the feature (array of int)
parm: DMAC:Disable or set latency for DMA Coalescing ((0=off, 1000-10000(msec), 250, 500 (usec)) (array of int)
parm: LRO:Large Receive Offload (0,1), default 0=off (array of int)
parm: enable_debug:Set to 1 to enable debug tracing into the syslog (uint)
parm: debug:Debug level (0=none, ..., 16=all) (int)
linux:~ #
2
方法二:
1:dmesg | grep ethx
如:
linux:~ # dmesg | grep eth17
[ 30.351872] igb 0000:0a:00.1: eth17: (PCIe:2.5Gb/s:Width x4) 00:0b:ab:52:fb:b3
[ 30.351952] igb 0000:0a:00.1: eth17: PBA No: ffffff-0ff
[429171.548763] device eth17 entered promiscuous mode
[429173.10] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
[429173.118867] ADDRCONF(NETDEV_UP): eth17: link is not ready
[429173.121176] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[429183.236266] eth17: no IPv6 routers present
[1641503.272376] igb 0000:0a:00.1: eth17: (PCIe:2.5Gb/s:Width x4) 00:0b:ab:52:fb:b3
[1641503.272460] igb 0000:0a:00.1: eth17: PBA No: ffffff-0ff
[1641598.356110] device eth17 entered promiscuous mode
[1641598.369229] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
[1641598.372636] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1641598.374978] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1641608.564181] eth17: no IPv6 routers present
[1701779.787471] igb 0000:0a:00.1: eth17: (PCIe:2.5GT/s:Width x4)
[1701779.787473] igb 0000:0a:00.1: eth17: MAC: 00:0b:ab:52:fb:b3
[1701779.787555] igb 0000:0a:00.1: eth17: PBA No: FFFFFF-0FF
[1702124.805650] device eth17 entered promiscuous mode
[1702141.839131] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1702144.057474] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
[1702144.059425] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1702154.705520] eth17: no IPv6 routers present
[1712008.630151] igb 0000:0a:00.1: eth17: (PCIe:2.5GT/s:Width x4)
[1712008.630153] igb 0000:0a:00.1: eth17: MAC: 00:0b:ab:52:fb:b3
[1712008.630235] igb 0000:0a:00.1: eth17: PBA No: FFFFFF-0FF
[1712100.136186] device eth17 entered promiscuous mode
[1712101.873823] ADDRCONF(NETDEV_UP): eth17: link is not ready
[1712104.159209] igb: eth17 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None
[1712104.161548] ADDRCONF(NETDEV_CHANGE): eth17: link becomes ready
[1712114.854722] eth17: no IPv6 routers present
linux:~ #
2:使用 modinfo igb 查看驱动信息
(结果同方法一中的)

7. 如何搭建一个Linux驱动编写环境

总结下之前尝试过的搭建的编写Linux驱动程序的环境。由于之前的环境是centos,其他平台的差异,就自己注意下吧。
步骤如下:
Step1:下载kernel源码包,解压到/usr/src目录下
命令如下:tar Jxvf /home/yourAccount/linux-2.6.32.67.tar.xz
Step2:为系统的include创建链接文件
命令如下:
cd /usr/include
rm -rf asm linux scsi
ln -s /usr/src/linux-2.6.32.22/include/asm-generic asm
ln -s /usr/src/linux-2.6.32.22/include/linux linux
ln -s /usr/src/linux-2.6.32.22/include/scsi scsi

Step3:下载安装内核开发包
命令如下: yum install kernel-devel-2.6.32-504.el6.x86_64.rpm
如果是其他linux系统,这个命令肯定不同!注意
Step4:建立构建的软连接
命令: ln -s ../../../usr/src/kernels/2.6.32-504.el6.x86_64/ build

在用make编译过程中之前出现过如下问题:
make:*** /lib/moles/.6.32-504.el6.x86_64/build/:No such file ore directory.Stop
出现这个问题的原因是系统没有安装内核开发包,可以查看/usr/src/kernals.
若该目录是空,则说明没安装。若非空,则可能链接有问题,安装上面Step4中到/lib/moles/2.6.32-504.el6.x86_64 去建立软链接

注:内核版本通过uname -r自行查看,查找匹配源码包和开发包

8. 怎样写linux下的USB设备驱动程序

USB驱动程序基础
在动手写USB驱动程序这前,让我们先看看写的USB驱动程序在内核中的结构,如下图:



USB通信最基本的形式是通过端点(USB端点分中断、批量、等时、控制四种,每种用途不同),USB端点只能往一个方向传送数据,从主机到设备或者从设备到主机,端点可以看作是单向的管道(pipe)。所以我们可以这样认为:设备通常具有一个或者更多的配置,配置经常具有一个或者更多的接口,接口通常具有一个或者更多的设置,接口没有或具有一个以上的端点。驱动程序把驱动程序对象注册到USB子系统中,稍后再使用制造商和设备标识来判断是否已经安装了硬件。USB核心使用一个列表(是一个包含制造商ID和设备号ID的一个结构体)来判断对于一个设备该使用哪一个驱动程序,热插拨脚本使用它来确定当一个特定的设备插入到系统时该自动装载哪一个驱动程序。
上面我们简要说明了驱动程序的基本理论,在写一个设备驱动程序之前,我们还要了解以下两个概念:模块和设备文件。
模块:是在内核空间运行的程序,实际上是一种目标对象文件,没有链接,不能独立运行,但是可以装载到系统中作为内核的一部分运行,从而可以动态扩充内核的功能。模块最主要的用处就是用来实现设备驱动程序。Linux下对于一个硬件的驱动,可以有两种方式:直接加载到内核代码中,启动内核时就会驱动此硬件设备。另一种就是以模块方式,编译生成一个.ko文件(在2.4以下内核中是用.o作模块文件,我们以2.6的内核为准,以下同)。当应用程序需要时再加载到内核空间运行。所以我们所说的一个硬件的驱动程序,通常指的就是一个驱动模块。
设备文件:对于一个设备,它可以在/dev下面存在一个对应的逻辑设备节点,这个节点以文件的形式存在,但它不是普通意义上的文件,它是设备文件,更确切的说,它是设备节点。这个节点是通过mknod命令建立的,其中指定了主设备号和次设备号。主设备号表明了某一类设备,一般对应着确定的驱动程序;次设备号一般是区分不同属性,例如不同的使用方法,不同的位置,不同的操作。这个设备号是从/proc/devices文件中获得的,所以一般是先有驱动程序在内核中,才有设备节点在目录中。这个设备号(特指主设备号)的主要作用,就是声明设备所使用的驱动程序。驱动程序和设备号是一一对应的,当你打开一个设备文件时,操作系统就已经知道这个设备所对应的驱动程序。对于一个硬件,Linux是这样来进行驱动的:首先,我们必须提供一个.ko的驱动模块文件。我们要使用这个驱动程序,首先要加载它,我们可以用insmod
xxx.ko,这样驱动就会根据自己的类型(字符设备类型或块设备类型,例如鼠标就是字符设备而硬盘就是块设备)向系统注册,注册成功系统会反馈一个主设备号,这个主设备号就是系统对它的唯一标识。驱动就是根据此主设备号来创建一个一般放置在/dev目录下的设备文件。在我们要访问此硬件时,就可以对设备文件通过open、read、write、close等命令进行。而驱动就会接收到相应的read、write操作而根据自己的模块中的相应函数进行操作了。

USB驱动程序实践
了解了上述理论后,我们就可以动手写驱动程序,如果你基本功好,而且写过linux下的硬件驱动,USB的硬件驱动和pci_driver很类似,那么写USB的驱动就比较简单了,如果你只是大体了解了linux的硬件驱动,那也不要紧,因为在linux的内核源码中有一个框架程序可以拿来借用一下,这个框架程序在/usr/src/~(你的内核版本,以下同)/drivers/usb下,文件名为usb-skeleton.c。写一个USB的驱动程序最基本的要做四件事:驱动程序要支持的设备、注册USB驱动程序、探测和断开、提交和控制urb(USB请求块)(当然也可以不用urb来传输数据,下文我们会说到)。
驱动程序支持的设备:有一个结构体struct
usb_device_id,这个结构体提供了一列不同类型的该驱动程序支持的USB设备,对于一个只控制一个特定的USB设备的驱动程序来说,struct
usb_device_id表被定义为:
/* 驱动程序支持的设备列表 */
static struct usb_device_id
skel_table [] = {
{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID)
},
{ } /* 终止入口 */
};
MODULE_DEVICE_TABLE (usb,
skel_table);
对于PC驱动程序,MODULE_DEVICE_TABLE是必需的,而且usb必需为该宏的第一个值,而USB_SKEL_VENDOR_ID和USB_SKEL_PRODUCT_ID就是这个特殊设备的制造商和产品的ID了,我们在程序中把定义的值改为我们这款USB的,如:
/*
定义制造商和产品的ID号 */
#define USB_SKEL_VENDOR_ID 0x1234
#define
USB_SKEL_PRODUCT_ID
0x2345
这两个值可以通过命令lsusb,当然你得先把USB设备先插到主机上了。或者查看厂商的USB设备的手册也能得到,在我机器上运行lsusb是这样的结果:
Bus
004 Device 001: ID 0000:0000
Bus 003 Device 002: ID 1234:2345 Abc Corp.

Bus 002 Device 001: ID 0000:0000
Bus 001 Device 001: ID
0000:0000
得到这两个值后把它定义到程序里就可以了。
注册USB驱动程序:所有的USB驱动程序都必须创建的结构体是struct
usb_driver。这个结构体必须由USB驱动程序来填写,包括许多回调函数和变量,它们向USB核心代码描述USB驱动程序。创建一个有效的struct
usb_driver结构体,只须要初始化五个字段就可以了,在框架程序中是这样的:
static struct usb_driver skel_driver
= {
.owner = THIS_MODULE,
.name = "skeleton",

.probe = skel_probe,
.disconnect = skel_disconnect,

.id_table = skel_table,
};

9. linux驱动开发要有哪些基础

需要一定的努力才可以学好:
Linux设备驱动是linux内核的一部分,是用来屏蔽硬件细节,为上层提供标准接口的一种技术手段。为了能够编写出质量比较高的驱动程序,要求工程师必须具备以下几个方面的知识:
1、 熟悉处理器的性能
如:处理器的体系结构、汇编语言、工作模式、异常处理等。对于初学者来说,在还不熟悉驱动编写方法的情况下,可以先不把重心放在这一项上,因为可能因为它的枯燥、抽象而影响到你对设备驱动的兴趣。随着你不断地熟悉驱动的编写,你会很自然的意识到此项的重要性。
2、掌握驱动目标的硬件工作原理及通讯协议
如:串口控制器、显卡控制器、硬件编解码、存储卡控制器、I2C通讯、SPI通讯、USB通讯、SDIO通讯、I2S通讯、PCI通讯等。编写设备驱动的前提就是需要了解设备的操作方法,所以这些内容的重要程度不言而喻。但不是说要把所有设备的操作方法都熟悉了以后才可以写驱动,你只需要了解你要驱动的硬件就可以了。
一、掌握硬件的控制方法
如:中断、轮询、DMA 等,通常一个硬件控制器会有多种控制方法,你需要根据系统性能的需要合理的选择操作方法。初学阶段以实现功能为目的,掌握的顺序应该是,轮询->中断->DMA。随着学习的深入,需要综合考虑系统的性能需求,采取合适的方法。
二、良好的GNU C语言编程基础
如:C语言的指针、结构体、内存操作、链表、队列、栈、C和汇编混合编程等。这些编程语法是编写设备驱动的基础,无论对于初学者还是有经验者都非常重要。
三、 良好的linux操作系统概念
如:多进程、多线程、进程调度、进程抢占、进程上下文、虚拟内存、原子操作、阻塞、睡眠、同步等概念及它们之间的关系。这些概念及方法在设备驱动里的使用是linux设备驱动区别单片机编程的最大特点,只有理解了它们才会编写出高质量的驱动。
四、掌握linux内核中设备驱动的编写接口
如:字符设备的cdev、块设备的gendisk、网络设备的net_device,以及基于这些基本接口的framebuffer设备的fb_info、mtd设备的mtd_info、tty设备的tty_driver、usb设备的usb_driver、mmc设备的mmc_host等。

热点内容
java反编译工具使用方法 发布:2024-05-05 06:00:38 浏览:216
恋人源码 发布:2024-05-05 05:53:33 浏览:165
安卓平板用什么助手好 发布:2024-05-05 05:51:09 浏览:774
java语义分析 发布:2024-05-05 05:32:39 浏览:754
我的世界服务器房型 发布:2024-05-05 05:31:16 浏览:702
pythonwhere 发布:2024-05-05 05:30:22 浏览:441
免费加密隐身侠 发布:2024-05-05 05:07:54 浏览:613
我的世界模组服务器推荐手机版 发布:2024-05-05 05:02:49 浏览:818
pr默认存储 发布:2024-05-05 04:29:31 浏览:553
roblox跑酷脚本怎么做 发布:2024-05-05 03:57:35 浏览:702