哈希算法是
Ⅰ 哈希算法
Hash(哈希或散列)算法
能将任意长度的二进制明文串映射为较短的(通常是固定长度的)二进制串(Hash值),并且不同的明文很难映射为相同的Hash值。
优秀的Hash算法将能实现如下功能:
给定明文和Hash算法,在有限时间和有限资源内能计算得到Hash值;
给定(若干)Hash值,在有限时间内很难(基本不可能)逆推出明文;
原始输入信息发生任何改变,新产生的Hash值都应该出现很大不同;
很难找到两段内容不同的明文,使得它们的Hash值一致(发生碰撞)。
目前,MD5和SHA1已经被破解,一般推荐至少使用SHA2-256或更安全的算法。
Ⅱ 哈希算法是什么呢
哈希算法就是一种特殊的函数,不论输入多长的一串字符,只要通过这个函数都可以得到一个固定长度的输出值,这就好像身份证号码一样,永远都是十八位而且全国唯一。
哈希算法的输出值就叫做哈希值。哈希算法也被称为“散列”,是区块链的四大核心技术之一。是能计算出一个数字消息所对应的、长度固定的字符串。
哈希算法原理:
Hash算法的原理是把输入空间的值映射到Hash空间内,由于Hash值的空间远小于输入的空间,而且借助抽屉原理 ,可以得出一定会存在不同的输入被映射成相同输出的情况,如果一个Hash算法足够好,那么他就一定会有更小的发生冲突的概率,也就是说,一个好的Hash算法应该具有优秀的 抗碰撞能力。
Ⅲ 哈希算法如此简单易懂,你还学不会吗
哈希算法这个词可以说在比特币和区块链的世界中无处不在。那么哈希算法到底是什么呢?
哈希算法是指把任意长度的二进制映射为固定长度的较小的二进制值,这个较小的二进制值叫做哈希值。
哪怕只更改明文中的一个字母,映射后的哈希值都会不一样。
竞争记账权的过程就是寻找一个哈希值所对应的原输入文本的过程,这需要进行大量的计算。
并且找到对应同一个哈希值对应的两个不同的输入几乎是不可能的。比如输入值X通过哈希计算后变成了Y,即f(x)=y,现在已知Y,求X。但是由于哈希算法的不可逆性,基本不可能算出X的值,但好在有一个范围,正着推比较容易,所以只能一个一个试,试出来正确的值。
举个更简单的例子,灰姑娘的童话故事我们都听过。王子的手里有一只水晶鞋,这只水晶鞋只有灰姑娘能穿,其他姑娘都不能穿,鞋号一样也不行。王子要在全国姑娘当中找到能穿这只鞋的灰姑娘,就需要做大量的工作,让姑娘们挨个儿试穿,知道找到最适合穿水晶鞋的灰姑娘。这和比特币中矿工竞争记账的情况是相似的。
当然哈希计算远比上年的函数和举例要复杂得多,有兴趣可以阅读更多的专业书籍。
Ⅳ 哈希的算法是什么
哈希算法是一个广义的算法,也可以认为是一种思想,使用Hash算法可以提高存储空间的利用率,可以提高数据的查询效率,也可以做数字签名来保障数据传递的安全性。所以Hash算法被广泛地应用在互联网应用中。
哈希算法也被称为散列算法,Hash算法虽然被称为算法,但实际上它更像是一种思想。Hash算法没有一个固定的公式,只要符合散列思想的算法都可以被称为是Hash算法。
特点:
加密哈希跟普通哈希的区别就是安全性,一般原则是只要一种哈希算法出现过碰撞,就会不被推荐成为加密哈希了,只有安全度高的哈希算法才能用作加密哈希。
同时加密哈希其实也能当普通哈希来用,Git 版本控制工具就是用 SHA-1 这个加密哈希算法来做完整性校验的。一般来讲越安全的哈希算法,处理速度也就越慢,所以并不是所有的场合都适合用加密哈希来替代普通哈希。
Ⅳ hash算法是怎么样的
hash算法是一种散列算法,是把任意的长度的输入,转换成固定的额输出,福鼎的输出,输出的是散列值。在空间的比较中,输入的空间是远大于输出的散列值的空间,不同输入散列成同样的输出,一般很难从输出的散列值获取输入值的。
常用的hash函数有直接取余法、乘法取整法,平方取中法。在直接取余法中,质数用到的比较多,在乘法取整法中,主要用于实数,在平方取中法里面,平方后取中间的,每位包含的信息比较多些。
Hash在管理数据结构中的应用
在用到hash进行管理的数据结构中,就对速度比较重视,对抗碰撞不太看中,只要保证hash均匀分布就可以。比如hashmap,hash值(key)存在的目的是加速键值对的查找,key的作用是为了将元素适当地放在各个桶里,对于抗碰撞的要求没有那么高。
换句话说,hash出来的key,只要保证value大致均匀的放在不同的桶里就可以了。但整个算法的set性能,直接与hash值产生的速度有关,所以这时候的hash值的产生速度就尤为重要。
Ⅵ 什么是哈希算法
哈希算法也被称为“散列”,是区块链的四大核心技术之一。是能计算出一个数字消息所对应的、长度固定的字符串(又称消息摘要)的算法。
散列算法是区块链中保证交易信息不被篡改的单向密码机制。区块链通过散列算法对一个交易区块中的交易进行加密,并把信息压缩成由一串数字和字母组成的散列字符串。
区块链的散列值能够唯一而准确地标识一个区块。在验证区块的真实性时,只需要简单计算出这个区块的散列值,如果没有变化就 意味着这个区块上的信息是没有被篡改过的。
相关信息:
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
Ⅶ 哈希算法的原理 哈希算法是什么
1、哈希算法又叫散列算法,是将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。它的原理其实很简单,就是把一段交易信息转换成一个固定长度的字符串。MD5和SHA-1可以说是应用最广泛的Hash算法,而它们都是以MD4为基础设计的。
2、这串字符串具有一些特点:
(1)信息相同,字符串也相同。
(2)信息相似不会影响字符串相同。
(3)可以生成无数的信息,但是字符串的种类是一定的,所以是不可逆的。
Ⅷ 哈希算法的原理
什么是哈希算法?哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。
Hash的特点
易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。
易计算:对于任意给定的消息,计算其Hash值比较容易。
单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。
抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。
高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
Ⅸ 哈希算法是什么呢
哈希算法就是一种特殊的函数,不论输入多长的一串字符,只要通过这个函数都可以得到一个固定长度的输出值,这就好像身份证号码一样,永远都是十八位而且全国唯一。哈希算法的输出值就叫做哈希值。
原理:
哈希算法有三个特点,它们赋予了区块链不可篡改、匿名等特性,并保证了整个区块链体系的完整。
第一个特点是具有单向性。比如输入一串数据,通过哈希算法可以获得一个哈希值,但是通过这个哈希值是没有办法反推回来得到输入的那串数据的。这就是单向性,也正是基于这一点,区块链才有效保护了我们信息的安全性。
哈希算法的第二个特点是抗篡改能力,对于任意一个输入,哪怕是很小的改动,其哈希值的变化也会非常大。
它的这个特性,在区块与区块的连接中就起到了关键性的作用。区块链的每个区块都会以上一个区块的哈希值作为标示,除非有人能够破解整条链上的所有哈希值,否则数据一旦记录在链上,就不可能进行篡改。
哈希算法的第三个特点就是抗碰撞能力。所谓碰撞,就是输入两个不同的数据,最后得到了一个相同的输入。
就跟我们逛街时撞衫一样,而坑碰撞就是大部分的输入都能得到一个独一无二的输出。在区块链的世界中,任何一笔交易或者账户的地址都是完全依托于哈希算法生产的。这也就保证了交易或者账户地址在区块链网络中的唯一性。
无论这笔转账转了多少钱,转给了多少个人,在区块链这个大账本中都是唯一的存在。它就像人体体内的白细胞,不仅区块链的每个部分都离不开它,而且它还赋予了区块链种种特点,保护着整个区块链体系的安全。
Ⅹ 哈希算法
1.通过哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)
2.对于输入数据非常敏感,及时更改了一个比特位,哈希值也大不相同
3.散列冲突的概率要小,
4.执行效率要高,及时很长的文本,也能尽快计算出哈希值
MD5的结果是128位 --> 32个16进制串
最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)
通过拿到加密后的密文然后再字典表(彩虹表)中比对,找到相同的密文则可以知道其明文。
可以通过在用户的密码后加盐(加入一个字符串)然后加密存储起来。
区块链是一块块区块组成的,每个区块分为两部分:区块头和区块体。
区块头保存着 自己区块体 和 上一个区块头 的哈希值。
因为这种链式关系和哈希值的唯一性,只要区块链上任意一个区块被修改过,后面所有区块保存的哈希值就不对了。
区块链使用的是 SHA256 哈希算法,计算哈希值非常耗时,如果要篡改一个区块,就必须重新计算该区块后面所有的区块的哈希值,短时间内几乎不可能做到。
假设我们有 k 个机器,数据的哈希值的范围是 [0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。