当前位置:首页 » 操作系统 » 虑波算法

虑波算法

发布时间: 2023-02-07 02:39:59

1. 数学滤波算法可以处理三个坐标点吗

滤波算法可以处理三个坐标点的。滤波在三坐标中的应用:
1、粗糙度对测量的影响:测量点也在图中被放大获取到大量的点,表面粗度被认为是,引起“噪点”的原因。
2、探针的机械滤波:
选择探针直径-使用探针测量工件会由于工件表面结构的影响产生机械滤波。
由于探针直径过大精细的工件表面的形状无法捕捉,因此可看作是机械低通滤波。
3、三坐标的滤波:
用同样参数进行低通滤波的扫描线。
如下图所示,描绘出的图形差异并不明显。

4、2 RC滤波:不再使用圆度测量最初的标准化滤波器,但是已被现代滤波计算所取代。
5、高斯滤波:坐标测量技术中标准滤波算法。此滤波方法为标准算法被广泛使用。他使用高斯曲线加权计算测量点得到新的轮廓。
6、样条滤波:基于滤波方程的增强滤波方法(多项式计算),样条滤波更合乎标准,也更优于高斯滤波但并不是标准滤波方法。
(1)虑波算法扩展阅读:
图像滤波是一种非常重要的图像处理技术,现在大火的卷积神经网络其实也是滤波的一种,都是用卷积核去提取图像的特征模式。不过,传统的滤波,使用的卷积核是固定的参数,是由经验非常丰富的人去手动设计的,也称为手工特征。而卷积神经网络的卷积核参数初始时未知的,根据不同的任务由数据和神经网络反向传播算法去学习得到的参数,更能适应于不同的任务。
自适应中值滤波
中值滤波器是一种常用的非线性滤波器,其基本原理是:选择待处理像素的一个邻域中各像素值的中值来代替待处理的像素。主要功能使某像素的灰度值与周围领域内的像素比较接近,从而消除一些孤立的噪声点,所以中值滤波器能够很好的消除椒盐噪声。不仅如此,中值滤波器在消除噪声的同时,还能有效的保护图像的边界信息,不会对图像造成很大的模糊(相比于均值滤波器)。
中值滤波器的效果受滤波窗口尺寸的影响较大,在消除噪声和保护图像的细节存在着矛盾:滤波窗口较小,则能很好的保护图像中的某些细节,但对噪声的过滤效果就不是很好,因为实际中的噪声不可能只占一个像素位置;反之,窗口尺寸较大有较好的噪声过滤效果,但是会对图像造成一定的模糊。另外,根据中值滤波器原理,如果在滤波窗口内的噪声点的个数大于整个窗口内非噪声像素的个数,则中值滤波就不能很好的过滤掉噪声。

2. 什么叫卡尔曼滤波算法其序贯算法

卡尔曼滤波算法(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
序贯算法又叫序贯相似性检测算法,是指图像匹配技术是根据已知的图像模块(模板图)在另一幅图像(搜索图)中寻找相应或相近模块的过程,它是计算机视觉和模式识别中的基本手段。已在卫星遥感、空间飞行器的自动导航、机器人视觉、气象云图分析及医学x射线图片处理等许多领域中得到了广泛的应用。研究表明,图像匹配的速度主要取决于匹配算法的搜索策略。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。

3. 什么是滤波算法

卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'

更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~
C(k+1) = C(k)~

4. 卡尔曼滤波算法的功能是什么

卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。卡尔曼滤波也可进行系统辨识。卡尔曼滤波一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

5. 常用的数字滤波的方法都有哪些,写出其中三种数字滤波的算法

经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路 。
现代滤波
现代滤波思想是和经典滤波思想截然不同的。现代滤波是利用信号的随机性的本质,将信号及其噪声看成随机信号,通过利用其统计特征,估计出信号本身。一旦信号被估计出,得到的信号本身比原来的信噪比高出许多。典型的数字滤波器有Kalman滤波,Wenner滤波,自适应滤波,小波变换(wavelet)等手段[3] 。从本质上讲,数字滤波实际上是一种算法,这种算法在数字设备上得以实现。这里的数字设备不仅包含计算机,还有嵌入式设备如:DSP,FPGA,ARM等。

6. 卡尔曼滤波算法是什么

卡尔曼滤波是一个滤波算法,应用非常广泛,它是一种结合先验经验、测量更新的状态估计算法,卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方误差为目的而推导出的几个递推数学等式。

卡尔曼过程中要用到的概念。即什么是协方差,它有什么含义,以及什么叫最小均方误差估计,什么是多元高斯分布。如果对这些有了了解,可以跳过,直接到下面的分割线。

均方误差:

它是"误差"的平方的期望值(误差就是每个估计值与真实值的差),也就是多个样本的时候,均方误差等于每个样本的误差平方再乘以该样本出现的概率的和。

方差:

方差是描述随机变量的离散程度,是变量离期望值的距离。

注意:

两者概念上稍有差别,当你的样本期望值就是真实值时,两者又完全相同。最小均方误差估计就是指估计参数时要使得估计出来的模型和真实值之间的误差平方期望值最小。

7. 高斯滤波的算法原理

高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,人们知道数字图像用于后期应用,其噪声是最大的问题,由于误差会累计传递等原因,很多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。与此相关的有Gauss-Laplace变换,其实就是为了得到较好的图像边缘,先对图像做Gauss平滑滤波,剔除噪声,然后求二阶导矢,用二阶导的过零点确定边缘,在计算时也是频域乘积=>空域卷积。
滤波器就是建立的一个数学模型,通过这个模型来将图像数据进行能量转化,能量低的就排除掉,噪声就是属于低能量部分。
若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。

8. 滤波在数学上是如何实现的

在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。

采用数字滤波算法克服随机干扰的误差具有以下优点:

1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。
2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。
3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。
4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤波法、加权平均滤波法、滑动平均滤波等。

(1)限幅滤波算法

该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。

算法的程序代码如下:

#defineA //允许的最大差值
chardata; //上一次的数据
char filter()
{
chardatanew; //新数据变量
datanew=get_data(); //获得新数据变量
if((datanew-data)>A||(data-datanew>A))
return data;
else
returndatanew;
}

说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。

(2)中值滤波算法

该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

算法的程序代码如下:
#define N11 //定义获得的数据个数
char filter()
{
charvalue_buff[N]; //定义存储数据的数组
char count,i,j,temp;
for(count=0;count
{
value_buf[count]=get_data();
delay(); //如果采集数据比较慢,那么就需要延时或中断
}
for(j=0;j
{
for(value_buff[i]>value_buff[i+1]
{
temp=value_buff[i];
value_buff[i]=value_buff[i+1];
value_buff[i+1]=temp;
}
}
returnvalue_buff[(N-1)/2];
}

说明:中值滤波比较适用于去掉由偶然因素引起的波动和采样器不稳定而引起的脉动干扰。若被测量值变化比较慢,采用中值滤波法效果会比较好,但如果数据变化比较快,则不宜采用此方法。

(3)算术平均滤波算法

该算法的基本原理很简单,就是连续取N次采样值后进行算术平均。
算法的程序代码如下:
char filter()
{
int sum=0;
for(count=0;count
{
sum+=get_data();
delay():
}
return (char)(sum/N);
}

说明:算术平均滤波算法适用于对具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值附近上下波动。信号的平均平滑程度完全到决于N值。当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。为了方便求平均值,N一般取4、8、16、32之类的2的整数幂,以便在程序中用移位操作来代替除法。

(4)加权平均滤波算法

由于前面所说的“算术平均滤波算法”存在平滑度和灵敏度之间的矛盾。为了协调平滑度和灵敏度之间的关系,可采用加权平均滤波。它的原理是对连续N次采样值分别乘上不同的加权系数之后再求累加,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的认识。各个加权系数均小于1的小数,且满足总和等于1的结束条件。这样加权运算之后的累加和即为有效采样值。其中加权平均数字滤波的数学模型是:

式中:D为N个采样值的加权平均值:XN-i为第N-i次采样值;N为采样次数;Ci为加权系数。加权系数Ci体现了各种采样值在平均值中所占的比例。一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。

样例程序代码如下:

char codejq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区
char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buff[N];
int sum=0;
for(count=0;count
{
value_buff[count]=get_data();
delay();
}
for(count=0;count
sum+=value_buff[count]*jq[count];
return(char)(sum/sum_jq);
}

(5)滑动平均滤波算法

以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。采用环型队列结构可以方便地实现这种数据存放方式。

程序代码如下:
char value_buff[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buff[i++]=get_data();
if(i==N)
i=0;
for(count=0;count
sum=value_buff[count];
return (char)(sum/N);
}

(6)低通滤波

将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:

Yn=a* Xn+(1-a) *Yn-1
式中 Xn——本次采样值
Yn-1——上次的滤波输出值;
,a——滤波系数,其值通常远小于1;
Yn——本次滤波的输出值。

由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。滤波算法的截止频率可用以下式计算:

fL=a/2Pit pi为圆周率3.14…
式中 a——滤波系数;
, t——采样间隔时间;
例如:当t=0.5s(即每秒2次),a=1/32时;
fL=(1/32)/(2*3.14*0.5)=0.01Hz

当目标参数为变化很慢的物理量时,这是很有效的。另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除,

低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。
设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。滤波程序如下:
虽千万里,吾往矣。

热点内容
电脑怎么访问局域网服务器 发布:2025-07-20 05:13:21 浏览:483
抖音mas算法 发布:2025-07-20 04:54:54 浏览:521
妈妈会把手机图案密码设置成什么 发布:2025-07-20 04:50:18 浏览:595
随机编译的项目 发布:2025-07-20 04:37:31 浏览:742
c语言判断文件结束 发布:2025-07-20 04:30:23 浏览:505
android线程状态 发布:2025-07-20 04:30:23 浏览:43
为什么安卓刷抖音没有苹果流畅 发布:2025-07-20 04:29:39 浏览:28
50个网需要什么服务器 发布:2025-07-20 04:26:25 浏览:823
java技术方案 发布:2025-07-20 04:26:25 浏览:112
c语言的注释位置 发布:2025-07-20 04:23:57 浏览:91