当前位置:首页 » 操作系统 » 软插补算法

软插补算法

发布时间: 2023-02-10 06:29:23

⑴ 几种常见的缺失数据插补方法

()案剔除(ListwiseDeletion)见、简单处理缺失数据用案剔除(listwisedeletion)统计软件(SPSSSAS)默认缺失值处理种任何变量含缺失数据相应案析剔除缺失值所占比例比较十效至于具体缺失比例算比例专家意见存较差距者认应5%者认20%即种却局限性减少本量换取信息完备造资源量浪费丢弃量隐藏些象信息本量较情况删除少量象足严重影响数据客观性结确性缺失数据所占比例较特别缺数据非随机布种能导致数据发偏离错误结论(二)均值替换(MeanImputation)变量十重要所缺失数据量较庞候案剔除遇困难许用数据同剔除围绕着问题研究者尝试各种各办其均值替换(meanimputation)我变量属性数值型非数值型别进行处理缺失值数值型根据该变量其所象取值平均值填充该缺失变量值;缺失值非数值型根据统计众数原理用该变量其所象取值数值补齐该缺失变量值种产偏估计所并推崇均值替换种简便、快速缺失数据处理使用均值替换插补缺失数据该变量均值估计产影响种建立完全随机缺失(MCAR)假设且造变量差标准差变(三)热卡填充(Hotdecking)于包含缺失值变量热卡填充数据库找与相似象用相似象值进行填充同问题能选用同标准相似进行判定见使用相关系数矩阵确定哪变量(变量Y)与缺失值所变量(变量X)相关所案按Y取值进行排序变量X缺失值用排缺失值前案数据代替与均值替换相比利用热卡填充插补数据其变量标准差与插补前比较接近归程使用热卡填充容易使归程误差增参数估计变稳定且种使用便比较耗(四)归替换(RegressionImputation)归替换首先需要选择若干预测缺失值自变量建立归程估计缺失值即用缺失数据条件期望值缺失值进行替换与前述几种插补比较该利用数据库尽量信息且些统计软件(Stata)已经能够直接执行该功能该诸弊端第虽偏估计却容易忽视随机误差低估标准差其未知性质测量值且问题随着缺失信息增变更加严重第二研究者必须假设存缺失值所变量与其变量存线性关系候种关系存(五)重替代(MultipleImputation)重估算由Rubin等于1987建立起种数据扩充统计析作简单估算改进产物首先重估算技术用系列能值替换每缺失值反映替换缺失数据确定性用标准统计析程替换产若干数据集进行析自于各数据集统计结进行综合总体参数估计值由于重估算技术并用单值替换缺失值试图产缺失值随机本种反映由于数据缺失导致确定性能够产更加效统计推断结合种研究者比较容易舍弃任何数据情况缺失数据未知性质进行推断NORM统计软件较简便操作该

⑵ 几种常见的缺失数据插补方法

(一)个案剔除法(Listwise Deletion)
最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise
deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。
(二)均值替换法(Mean Imputation)
在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean
imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。
(三)热卡填充法(Hotdecking)
对于一个包含缺失值的变量,热卡填充法在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。与均值替换法相比,利用热卡填充法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡填充法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。
(四)回归替换法(Regression Imputation)
回归替换法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计软件(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。
(五)多重替代法(Multiple Imputation)
多重估算是由Rubin等人于1987年建立起来的一种数据扩充和统计分析方法,作为简单估算的改进产物。首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。NORM统计软件可以较为简便地操作该方法

⑶ 基准脉冲插补法和数据采样插补法各有什么特点

基准脉冲插补法在插补计算过程中不断地向各个坐标轴发出相互协调的进给脉冲,驱动各坐标轴进给电动机的运动。实现方法比较简单,既可以用硬件来实现,也可以用软件来实现。数据采样插补法采用软件插补法,其输出的插补结果不是脉冲,而是数据。数控系统定时地对位置检测进行采样,采样数据与插补程序所产生的指令数据相比较以后,得到位置偏差,经伺服驱动控制伺服电动机

⑷ 什么是采用插补点技术

插补技术。实际上就是将得到的图像放大,由于感光板的像素数不可能增多,取全部画面中间一部分放大后填充全部换面,不足的像素采用插补计算填充。所谓插补技术,是将要插补点的周围各点的数值为依据,经过专门的函数计算,得到插补点的值。这个计算是通过软件来完成的。所以在像片中,该点并非是真实地反映,往往与实际有较大的差异,还有一种,相机本身的感光板像素数只有某一数值,而在指标中却标出大大大于该数值的值,实际也是使用了软件插补后得到的。在简易廉价性的机子中往往使用了这种颇具欺骗性的表示法,应该注意。

⑸ cnc系统的插补计算一般采用软件插补和硬件插补相结合的办法,即什么'

圆弧插补目前可分为硬件圆弧插补和软件圆弧插补;
硬件圆弧插补是指在运动控制芯片上已集成了圆弧插补算法,无需额外用软件算法实现
机械手在需要两轴或两轴以上配合走出一条匀速直线轨迹时需要用到直线插补;
目前软件圆弧插补的算法也是将圆弧细分成相应数量的短直线,然后以直线插补的模式运行的

热点内容
数据库表设计教程 发布:2025-09-16 10:50:47 浏览:340
朋友圈缓存如何清除 发布:2025-09-16 10:49:57 浏览:438
sqlserver数据类型 发布:2025-09-16 10:41:16 浏览:732
如何配置全站时间同步系统 发布:2025-09-16 10:19:13 浏览:167
java解析json文件 发布:2025-09-16 10:10:41 浏览:968
车配置字母怎么看 发布:2025-09-16 10:09:32 浏览:408
烟台电脑服务器维修 发布:2025-09-16 10:08:45 浏览:268
编译命令cl 发布:2025-09-16 09:57:21 浏览:520
小君直播密码是多少 发布:2025-09-16 09:25:46 浏览:610
用中文编译的编程软件 发布:2025-09-16 09:04:37 浏览:152