优先数调度算法
⑴ 动态优先数高者优先进程调度算法
我也在找这个
⑵ 操作系统的主要算法都有哪些
一、进程(作业)调度算法
l 先来先服务调度算法(FCFS):每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。特点:利于长进程,而不利于短进程。
l 短进程(作业)优先调度算法(SPF):它是从就绪队列中选择一个估计运行时间最短的进程,将处理器分配给该进程,使之占有处理器并执行,直到该进程完成或因发生事件而阻塞,然后退出处理器,再重新调度。
l 时间片轮转调度算法 :系统将所有的就绪进程按进入就绪队列的先后次序排列。每次调度时把CPU分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停该进程的执行,使其退出处理器,并将它送到就绪队列的末尾,等待下一轮调度执行。
l 优先数调度算法 :它是从就绪队列中选择一个优先权最高的进程,让其获得处理器并执行。
l 响应比高者优先调度算法:它是从就绪队列中选择一个响应比最高的进程,让其获得处理器执行,直到该进程完成或因等待事件而退出处理器为止。特点:既照顾了短进程,又考虑了进程到达的先后次序,也不会使长进程长期得不到服务,因此是一个比较全面考虑的算法,但每次进行调度时,都需要对各个进程计算响应比。所以系统开销很大,比较复杂。
l 多级队列调度算法
基本概念:
作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)
作业平均周转时间(T)=周转时间/作业个数
作业带权周转时间(Wi)=周转时间/运行时间
响应比=(等待时间+运行时间)/运行时间
二、存储器连续分配方式中分区分配算法
n 首次适应分配算法(FF):对空闲分区表记录的要求是按地址递增的顺序排列的,每次分配时,总是从第1条记录开始顺序查找空闲分区表,找到第一个能满足作业长度要求的空闲区,分割这个空闲区,一部分分配给作业,另一部分仍为空闲区。
n 循环首次适应算法:每次分配均从上次分配的位置之后开始查找。
n 最佳适应分配算法(BF):是按作业要求从所有的空闲分区中挑选一个能满足作业要求的最小空闲区,这样可保证不去分割一个更大的区域,使装入大作业时比较容易得到满足。为实现这种算法,把空闲区按长度递增次序登记在空闲区表中,分配时,顺序查找。
三、页面置换算法
l 最佳置换算法(OPT) :选择以后永不使用或在最长时间内不再被访问的内存页面予以淘汰。
l 先进先出置换算法(FIFO):选择最先进入内存的页面予以淘汰。
l 最近最久未使用算法(LRU):选择在最近一段时间内最久没有使用过的页,把它淘汰。
l 最少使用算法(LFU):选择到当前时间为止被访问次数最少的页转换。
四、磁盘调度
n 先来先服务(FCFS):是按请求访问者的先后次序启动磁盘驱动器,而不考虑它们要访问的物理位置
n 最短寻道时间优先(SSTF):让离当前磁道最近的请求访问者启动磁盘驱动器,即是让查找时间最短的那个作业先执行,而不考虑请求访问者到来的先后次序,这样就克服了先来先服务调度算法中磁臂移动过大的问题
n 扫描算法(SCAN)或电梯调度算法:总是从磁臂当前位置开始,沿磁臂的移动方向去选择离当前磁臂最近的那个柱面的访问者。如果沿磁臂的方向无请求访问时,就改变磁臂的移动方向。在这种调度方法下磁臂的移动类似于电梯的调度,所以它也称为电梯调度算法。
n 循环扫描算法(CSCAN):循环扫描调度算法是在扫描算法的基础上改进的。磁臂改为单项移动,由外向里。当前位置开始沿磁臂的移动方向去选择离当前磁臂最近的哪个柱面的访问者。如果沿磁臂的方向无请求访问时,再回到最外,访问柱面号最小的作业请求。
⑶ 作业调度的算法有哪些
作业调度的算法有:算法有先来先服务、最短作业优先算法、最高响应比优先算法、基于优先数调度算法。
1、算法有先来先服务
最简单的调度算法,按作业的先后顺序进行调度,只考虑每个作业的等待时间而未考虑执行时间的长短。
2、最短作业优先算法
最短作业优先算法是对先来先服务算法的改进,其目标是减少平均周转时间。对预计执行时间短的作业优先分派处理机。通常后来的短作业不抢先正在执行的作业。 只考虑执行时间而未考虑等待时间的长短。
3、最高响应比优先算法
最高响应比优先算法是对先来先服务方式和最短作业优先算法方式的一种综合平衡。最高响应比优先法调度策略同时考虑每个作业的等待时间的长短和估计需要的执行时间长短,从中选出相应比最高的作业投入执行。
4、基于优先数调度算法
优先数调度算法常用于批处理系统中。在进程调度中,每次调度时,系统把处理机分配给就绪队列中优先数最高的进程。它又分为两种:非抢占式优先数算法和抢占式优先数算法。
(3)优先数调度算法扩展阅读:
作业调度是指按照时间周期(年、月、日、时、分、秒等)对作业进行分割,并根据业务需求、作业长度、存储管理及依赖性关系对作业的执行方式加以调度。主要任务是从作业后备队列中选择作业进入主存运行。作业调度的功能主要有以下几方面:
1、记录各作业在系统中的状态;
2、从后备队列中挑选一部分作业投入运行;
3、从被选中的作业做好执行前的准备工作;
4、在作业执行结束时,做善后处理工作。
进行作业调度有很多作业调度算法,这些作业调度算法要实现的目标是:
1、调度对所有作业都是公平合理的;
2、应使设备有较高的利用率(提供系统利用率);
3、每次运行尽可能多的作业(提高系统吞吐量);
4、较快的相应时间。
⑷ 优先级调度算法是什么
优先级算法是指在进程创建时先确定一个初始优先数,以后在进程运行中随着进程特性的改变不断修改优先数,这样,由于开始优先数很低而得不到CPU的进程,就能因为等待时间的增长而优先数变为最高而得到CPU运行。
⑸ 进程调度的方式有哪两种试列举至少4种进程调度算法。
进程调度的方式有非剥夺方式和剥夺方式。
非剥夺方式:
分派程序一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生某事件而阻塞时,才把处理机分配给另一个进程。
剥夺方式:
当一个进程正在运行时,系统可以基于某种原则,剥夺已分配给它的处理机,将之分配给其它进程。剥夺原则有:优先权原则、短进程优先原则、时间片原则。
进程调度算法:
1、先进先出算法(FIFO):
算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便一直执行下去,直到该进程完成或阻塞时,才释放处理机。
举例:有三个进程P1、P2和P3先后进入就绪队列,它们的执行期分别是21、6和3个单位时间,对于P1、P2、P3的周转时间为21、27、30,平均周转时间为26。可见,FIFO算法服务质量不佳,容易引起作业用户不满,常作为一种辅助调度算法。
2、最短CPU运行期优先调度算法(SCBF--Shortest CPU Burst First):
该算法从就绪队列中选出下一个“CPU执行期最短”的进程,为之分配处理机。
举例:在就绪队列中有四个进程P1、P2、P3和P4,它们的下一个执行进程调度期分别是16、12、4和3个单位时间,P1、P2、P3和P4的周转时间分别为35、19、7、3,平均周转时间为16。该算法虽可获得较好的调度性能,但难以准确地知道下一个CPU执行期,而只能根据每一个进程的执行历史来预测。
3、时间片轮转法:
前几种算法主要用于批处理系统中,不能作为分时系统中的主调度算法,在分时系统中,都采用时间片轮转法。简单轮转法:系统将所有就绪进程按FIFO规则排队,按一定的时间间隔把处理机分配给队列中的进程。这样,就绪队列中所有进程均可获得一个时间片的处理机而运行。
4、多级反馈队列:
多级队列方法:将系统中所有进程分成若干类,每类为一级。多级反馈队列方式是在系统中设置多个就绪队列,并赋予各队列以不同的优先权。
⑹ 作业调度算法的选择原则有哪几个
批处理作业的调度算法主要有以下几种:
①先来先服务算法。原则上按照作业进入输入井的次序调度,如果作业的资源得不到满足,将会推迟调度,它的资源得到满足的时候会优先被调度进来。
优点:具有一定的公平性。
缺点:系统的吞吐率低,平均周转时间长,有大作业到来的时,许多小作业推迟调度。
②计算时间短的作业优先.优先调度计算时间短的作业进行调度,资源不满足的情况下推迟调度。在这种调度算法下,要求用户要对作业的计算时间预先有一个估计,调度以此为依据。
优点:由于被选中的作业计算时间,所以不能尽快地完成并退出系统,降低了作业的平均等待时间,提高了系统的吞吐率。
缺点:大作业会不满意,而且极限情况下使得某些大作业始终得不到调度。
③响应比高者优先算法。该算法考虑了计算时间等待时间,既考虑了计算时间短的作业优先,又考虑了大作业长期等待的问题。所谓响应比是按照以下公式来定义的:
响应比R=等待时间/计算时间
这里的计算时间是估计的作业计算时间,从公式看,计算时间越短,响应比越高;而另一方面,大作业等待时间越长,响应比也会越大。一个作业完成以后,需要重新计算一下在输入井中的各个作业的响应比,最高的将优先调度。
④优先数调度算法。为每一个作业指定一个优先数,优先数高的作业先被调度。对于优先数相等的作业采用先来先服务的策略。优先数的制定原则是:作业的缓急程序,估计的计算时间,作业的等待时间,资源申请情况等因素综合考虑。
⑤均衡调度算法。使用不同资源的进程同时执行,减少作业等待同类设备而耗费的时间,加快作业的执行。
⑺ 将最高优先数优先的调度算法改为时间片轮转调度算法
#include<iostream>
using namespace std;
struct PCB_Type{
char name;
int cpu_time;
};
struct QueueNode{
struct PCB_Type PCB;
struct QueueNode *next;
};
int main(){
int m,n,t;
int usecpu=0,unusecpu=0;
cout<<"输入就绪队列中的进程数目m:";
cin>>m;
cout<<"输入阻塞队列中的进程的数目n:";
cin>>n;
cout<<"输入唤醒系统资源的相隔时间片个数t:";
cin>>t;
struct QueueNode *readyhead=new QueueNode ,*readytail=new QueueNode,
*blockedhead=new QueueNode,*blockedtail=new QueueNode;
// readyhead=NULL;readytail=NULL;blockedhead=NULL;blockedtail=NULL;
readyhead=readytail;
blockedhead=blockedtail;
for(int i=1;i<=m;i++){
struct QueueNode *t1=new QueueNode;
cout<<"输入就绪队列中进程的name和cpu_time:";
cin>>t1->PCB.name>>t1->PCB.cpu_time;
readytail->next=t1;
readytail=t1;
}
for(int j=1;j<=n;j++){
struct QueueNode *t2=new QueueNode;
cout<<"输入阻塞队列中进程的name和cpu_time:";
cin>>t2->PCB.name>>t2->PCB.cpu_time;
blockedtail->next=t2;
blockedtail=t2;
}
cout<<"输出就绪队列的进程信息:";
for(struct QueueNode *t3=readyhead->next;t3!=readytail->next;t3=t3->next){
cout<<t3->PCB.name<<"、"<<t3->PCB.cpu_time<<"---> ";
}
cout<<"无进程";
cout<<endl;
cout<<"输出阻塞队列的进程信息:";
struct QueueNode *t4;
t4=blockedhead->next;
while(t4!=blockedtail->next){
cout<<t4->PCB.name<<"、"<<t4->PCB.cpu_time<<"---> ";
t4=t4->next;
}
cout<<"无进程";
cout<<endl<<"进程的运行顺序:";
int x=0;
while(readyhead!=readytail||blockedhead!=blockedtail){
if(readyhead!=readytail){
struct QueueNode *p=readyhead->next;
cout<<p->PCB.name<<",";
p->PCB.cpu_time--;
usecpu++;
if(readyhead->next!=readytail){
if(p->PCB.cpu_time>0){
readyhead->next=p->next;//出队列
readytail->next=p;
readytail=p;
}
else{
readyhead->next=p->next;
delete p;
}
}
else//队列中只有两个节点 头结点和尾结点
{
if(p->PCB.cpu_time<=0){readytail=readyhead;//只有进程为执行完,就继续执行,完成之后,把队列清空,释放指针p;就绪队列无进程
delete p;}
}
}
else
{
unusecpu++;
cout<<"_,";
}
x++;
if(x==t){
if(blockedhead!=blockedtail){
struct QueueNode *q=blockedhead->next;
if(blockedhead->next!=blockedtail)
{
blockedhead->next=q->next;
}
else
{
blockedhead=blockedtail;
}
readytail->next=q;
readytail=q;
x=0;
}
}
}
cout<<endl;
cout<<"cpu的利用率="<<usecpu<<"/"<<usecpu+unusecpu<<endl;
return 0;
}