当前位置:首页 » 操作系统 » 算法的优势

算法的优势

发布时间: 2023-02-13 01:22:49

1. 机器学习中常见算法优缺点之朴素贝叶斯算法

在机器学习中有很多算法,而有一种算法有着坚实的数学背景,并且被广泛使用,这种算法就是朴素贝叶斯算法。当然,朴素贝叶斯算法的优点有很多,但这种算法的缺点也是我们不能忽视的,那么大家知道不知道朴素贝叶斯算法的优点和缺点是什么呢?下面我们就给大家介绍一下这个问题。
那么什么是朴素贝叶斯算法呢?其实朴素贝叶斯属于生成式模型,也就是关于生成模型和判别式模型,主要还是在于是否需要求联合分布,这种算法是一种比较简单的算法,你只需做一堆计数即可。如果注有条件独立性假设,朴素贝叶斯分类器的收敛速度将快于判别模型,比如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。
那么朴素贝叶斯算法的优点是什么呢?这种算法的优点有五个,第一就是朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。第二就是对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已。第三就是对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练)。第四就是对缺失数据不太敏感,算法也比较简单,常用于文本分类。第五就是朴素贝叶斯对结果解释容易理解。
当然,朴素贝叶斯算法的缺点也是很明显的,朴素贝叶斯算法的缺点有四点,第一就是需要计算先验概率。第二就是分类决策存在错误率。第三就是对输入数据的表达形式很敏感。第四就是对由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
那么朴素贝叶斯应用领域是什么呢?其实朴素贝叶斯算法在欺诈检测中使用较多。当然,我们还可以用朴素贝叶斯算法来决定一封电子邮件是否是垃圾邮件。还可以用朴素贝叶斯算法判断一篇文章应该的类别,同时也能够使用贝叶斯算法去判断一段文字表达的是积极的情绪还是消极的情绪。从中我们可以看出朴素贝叶斯算法是一个十分实用的算法。
在这篇文章中我们给大家介绍了关于朴素贝叶斯算法优缺点的相关知识,通过对这些知识的讲解相信大家已经对朴素贝叶斯算法有了一定的了解,希望这篇文章能够帮助大家。

2. Arnoldi算法的优缺点

1.优点:适合稀疏数据集。算法原理简单,易实现。适合事务数据库的关联规则挖掘。2.缺点:可能产生庞大的候选集。算法需多次遍历数据集,算法效率低,耗时。
Apriori算法是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。项集出现的频率是包含项集的事务数,称为项集的频率。如果某项集满足最小支持度,则称它为频繁项集。

3. 数据挖掘十大经典算法及各自优势

数据挖掘十大经典算法及各自优势

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

以上是小编为大家分享的关于数据挖掘十大经典算法及各自优势的相关内容,更多信息可以关注环球青藤分享更多干货

4. GKA算法的优势与劣势

优势是对选取和样本的输入顺序非常敏感,劣势是对算法方面容易陷入局部最优。
基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。

5. 对称加密算法的优点有哪些

算法公开、计算量小、加密速度快、加密效率高。

对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。

对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密。

(5)算法的优势扩展阅读:

对称加密算法缺点:

交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的唯一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。

对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。而与公开密钥加密算法比起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使用范围有所缩小。

6. 遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点

遗传算法:其优点是能很好地处理约束,跳出局部最优,最终得到全局最优解。缺点是收敛速度慢,局部搜索能力弱,运行时间长,容易受到参数的影响。

模拟退火:具有局部搜索能力强、运行时间短的优点。缺点是全局搜索能力差,容易受到参数的影响。

爬山算法:显然爬山算法简单、效率高,但在处理多约束大规模问题时,往往不能得到较好的解决方案。

数值算法:这个数值算法的含义太宽泛了,指的是哪种数值算法,阵列算法与爬山算法一样,各有优缺点。

(6)算法的优势扩展阅读:

注意事项:

遗传算法的机制比较复杂,在Matlab中已经用工具箱中的命令进行了打包,通过调用可以非常方便的使用遗传算法。

函数GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x为最优解,Fval为最优值,@Fitnessness为目标函数,Nvars为自变量个数,options为其他属性设置。系统的默认值是最小值,所以函数文档中应该加上一个减号。

要设置选项,您需要以下函数:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通过该函数,可以确定一些遗传算法的参数。

7. K-means的算法优点

K-Means聚类算法的优点主要集中在:
1.算法快速、简单;
2.对大数据集有较高的效率并且是可伸缩性的;
3.时间复杂度近于线性,而且适合挖掘大规模数据集。K-Means聚类算法的时间复杂度是O(nkt) ,其中n代表数据集中对象的数量,t代表着算法迭代的次数,k代表着簇的数目。

8. 机器学习中算法的优缺点之最近邻算法

机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。

9. 算法可以使用哪些描述方式,各有什么优势

算法的描述方式有:自然语言,流程图,伪代码等。

1、自然语言的优势:自然语言即人类语言,描述的算法通俗易懂,不用专门的训练,较为灵活。

2、流程图的优势:流程图描述的算法清晰简洁,容易表达选择结构,不依赖于任何具体的计算机和计算机程序设计语言,从而有利于不同环境的程序设计。

3、伪代码的优势:回避了程序设计语言的严格、烦琐的书写格式,书写方便,同时具备格式紧凑,易于理解,便于向计算机程序设计语言过渡的优点。

(9)算法的优势扩展阅读:

算法使用伪代码的目的是使被描述的算法可以容易地以任何一种编程语言实现。

因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。 介于自然语言与编程语言之间,以编程语言的书写形式指明算法职能。

伪代码只是像流程图一样用在程序设计的初期,帮助写出程序流程。简单的程序一般都不用写流程、写思路,但是复杂的代码,还是需要把流程写下来,总体上去考虑整个功能如何实现。

热点内容
手机设置开机手势密码后如何解锁 发布:2025-07-26 15:39:14 浏览:39
迭代优化算法 发布:2025-07-26 15:25:45 浏览:947
东风本田买哪个配置好 发布:2025-07-26 15:10:01 浏览:763
plsql游标 发布:2025-07-26 15:09:51 浏览:126
android转字符串数组 发布:2025-07-26 15:08:05 浏览:267
实时产量编程 发布:2025-07-26 15:03:33 浏览:112
c语言汉诺塔算法 发布:2025-07-26 14:56:13 浏览:937
androidqq空间分享 发布:2025-07-26 14:27:27 浏览:724
为什么招生办公室登录密码错误 发布:2025-07-26 14:27:13 浏览:665
java或运算符 发布:2025-07-26 14:22:16 浏览:259