当前位置:首页 » 操作系统 » dijkstra算法最短路径

dijkstra算法最短路径

发布时间: 2023-02-18 18:28:21

1. dijkstra算法是什么

Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。

其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性。

不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离不会改变的性质。

举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。Dijkstra算法可以用来找到两个城市之间的最短路径。

Dijkstra算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。我们以E所有边的集合,而边的权重则由权重函数w: E→[0,∞]定义。

因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。边的花费可以想象成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。

已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e.最短路径)。这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。

2. 图遍历算法之最短路径Dijkstra算法

最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:

常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。

Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决着名的旅行商问题。

问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。

为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。

以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):

注:
01) 是已计算出最短路径的顶点集合;
02) 是未计算出最短路径的顶点集合;
03) 表示顶点 到顶点 的最短距离为3
第1步 :选取顶点 添加进


第2步 :选取顶点 添加进 ,更新 中顶点最短距离




第3步 :选取顶点 添加进 ,更新 中顶点最短距离




第4步 :选取顶点 添加进 ,更新 中顶点最短距离





第5步 :选取顶点 添加进 ,更新 中顶点最短距离



第6步 :选取顶点 添加进 ,更新 中顶点最短距离



第7步 :选取顶点 添加进 ,更新 中顶点最短距离

示例:node编号1-7分别代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))输出结果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))输出结果:

示例:

找到D(4)到G(7)的最短路径:

[1] 维基网络,最短路径问题: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

3. 最短路径算法(Dijkstra)

Dijkstra( 迪科斯特拉 )算法是用来解决单源最短路径的算法,要求路径权值非负数。该算法利用了深度优先搜索和贪心的算法。

下面是一个有权图,求从A到各个节点的最短路径。

第1步:从A点出发,判断每个点到A点的路径(如果该点不能直连A点则距离值为无穷大,如果该点能和A直连则是当前的权值),计算完之后把A点上色,结果如下图:

第2步:从除A点之外的点查找到距离A点最近的点C,从C点出发查找其邻近的节点(除去已上色的点),并重新计算C点的邻近点距离A点的值,如图中B点,若新值(C点到A点的值+C点到该点的路径)小于原值,则将值更新为5,同理更新D、E点。同时将C标记为已经处理过,如图所示涂色。

第3步:从上色的节点中查找距离A最近的B点,重复第3步操作。

第4步: 重复第3步,2步,直到所有的节点都上色。

最后就算出了从A点到所有点的最短距离。

leetcode 743题

4. 最短路径 | 深入浅出Dijkstra算法(一)

上次我们介绍了神奇的只有 五行的 Floyd-Warshall 最短路算法 ,它可以方便的求得 任意两点的最短路径, 这称为 “多源最短路”。

这次来介绍 指定一个点(源点)到其余各个顶点的最短路径, 也叫做 “单源最短路径”。 例如求下图中的 1 号顶点到 2、3、4、5、6 号顶点的最短路径。

与 Floyd-Warshall 算法一样,这里仍然 使用二维数组 e 来存储顶点之间边的关系, 初始值如下。

我们还需要用 一个一维数组 dis 来存储 1 号顶点到其余各个顶点的初始路程, 我们可以称 dis 数组为 “距离表”, 如下。

我们将此时 dis 数组中的值称为 最短路的“估计值”。

既然是 求 1 号顶点到其余各个顶点的最短路程, 那就 先找一个离 1 号顶点最近的顶点。

通过数组 dis 可知当前离 1 号顶点最近是 2 号顶点。 当选择了 2 号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”, 即 1 号顶点到 2 号顶点的最短路程就是当前 dis[2]值。

为什么呢?你想啊, 目前离 1 号顶点最近的是 2 号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 1 号顶点到 2 号顶点的路程进一步缩短了。 因此 1 号顶点到其它顶点的路程肯定没有 1 号到 2 号顶点短,对吧 O(∩_∩)O~

既然选了 2 号顶点,接下来再来看 2 号顶点 有哪些 出边 呢。有 2->3 和 2->4 这两条边。

先讨论 通过 2->3 这条边能否让 1 号顶点到 3 号顶点的路程变短。 也就是说现在来比较 dis[3] dis[2]+e[2][3] 的大小。其中 dis[3]表示 1 号顶点到 3 号顶点的路程,dis[2]+e[2][3]中 dis[2]表示 1 号顶点到 2 号顶点的路程,e[2][3]表示 2->3 这条边。所以 dis[2]+e[2][3]就表示从 1 号顶点先到 2 号顶点,再通过 2->3 这条边,到达 3 号顶点的路程。

我们发现 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新为 10。这个过程有个专业术语叫做 “松弛” 。即 1 号顶点到 3 号顶点的路程即 dis[3],通过 2->3 这条边 松弛成功。 这便是 Dijkstra 算法的主要思想: 通过 “边” 来松弛 1 号顶点到其余各个顶点的路程。

同理通过 2->4(e[2][4]),可以将 dis[4]的值从 ∞ 松弛为 4(dis[4]初始为 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新为 4)。

刚才我们对 2 号顶点所有的出边进行了松弛。松弛完毕之后 dis 数组为:

接下来,继续在剩下的 3、4、5 和 6 号顶点中,选出离 1 号顶点最近的顶点。通过上面更新过 dis 数组,当前离 1 号顶点最近是 4 号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对 4 号顶点的所有出边(4->3,4->5 和 4->6)用刚才的方法进行松弛。松弛完毕之后 dis 数组为:

继续在剩下的 3、5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 3 号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对 3 号顶点的所有出边(3->5)进行松弛。松弛完毕之后 dis 数组为:

继续在剩下的 5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 5 号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后 dis 数组为:

最后对 6 号顶点的所有出边进行松弛。因为这个例子中 6 号顶点没有出边,因此不用处理。 到此,dis 数组中所有的值都已经从“估计值”变为了“确定值”。

最终 dis 数组如下,这便是 1 号顶点到其余各个顶点的最短路径。

OK,现在来总结一下刚才的算法。 Dijkstra算法的基本思想是:每次找到离源点(上面例子的源点就是 1 号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。

基本步骤如下:

在 博客 中看到两个比较有趣的问题,也是在学习Dijkstra时,可能会有疑问的问题。

当我们看到上面这个图的时候,凭借多年对平面几何的学习,会发现在“三角形ABC”中,满足不了 构成三角形的条件(任意两边之和大于第三边)。 纳尼,那为什么图中能那样子画?

还是“三角形ABC”,以A为起点,B为终点,如果按照平面几何的知识, “两点之间线段最短”, 那么,A到B的最短距离就应该是6(线段AB),但是,实际上A到B的最短距离却是3+2=5。这又怎么解释?

其实,之所以会有上面的疑问,是因为 对边的权值和边的长度这两个概念的混淆, 。之所以这样画,也只是为了方便理解(每个人写草稿的方式不同,你完全可以用别的方式表示,只要便于你理解即可)。

PS:数组实现邻接表可能较难理解,可以看一下 这里

参考资料:

Dijkstra算法是一种基于贪心策略的算法。每次新扩展一个路程最短的点,更新与其相邻的点的路程。当所有边权都为正时,由于不会存在一个路程更短的没扩展过的点,所以这个点的路程永远不会再被改变,因而保证了算法的正确性。

根据这个原理, 用Dijkstra算法求最短路径的图不能有负权边, 因为扩展到负权边的时候会产生更短的路径,有可能破坏了已经更新的点路径不会发生改变的性质。

那么,有没有可以求带负权边的指定顶点到其余各个顶点的最短路径算法(即“单源最短路径”问题)呢?答案是有的, Bellman-Ford算法 就是一种。(我们已经知道了 Floyd-Warshall 可以解决“多源最短路”问题,也要求图的边权均为正)

通过 邻接矩阵 的Dijkstra时间复杂度是 。其中每次找到离 1 号顶点最近的顶点的时间复杂度是 O(N),这里我们可以用 优先队列(堆) 来优化,使得这一部分的时间复杂度降低到 。这个我们将在后面讨论。

5. 直观理解:单源点最短路径——Dijkstra算法

  Dijkstra算法是由荷兰计算机科学家 Edsger Wybe Dijkstra于1959年提出的单源点最短路径算法(SSSP:Single Souce Shortest Path)。是一个解决加权图(不含负权重的边)中从一个顶点到其余各个顶点最短路径问题的算法。Dijkstra算法是一个集 贪心算法 , 广度优先搜索(BFS) 和 动态规划 于一身的最短路径算法。Dijkstra算法的主要特点是从起源点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接顶点,直到扩展到终点为止。
  Dijkstra算法通过维护两个集合: (已求出最短路径的顶点)和 (未求出最短路径的顶点),每次迭代地从 中移除路径距离最小的点到集合 中,并通过这个新移入的点来更新 中各个顶点到源点的最短路径,直到集合 为空。下面我们通过一个例子来简单描述Dijkstra算法的过程。
  假设我们有如下的图,其中顶点A未此次算法的起点:

  首先我们需要初始化两个集合 和 ,以及 中每个顶点到源点的距离,若不直接于A相邻,结果置为正无穷∞。

   Step 1: 从集合 中挑选出距离最小的点,这里会挑选出顶点F,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。

   Step 2:: 从集合 中挑选出距离最小的点,这里会挑选出顶点E,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。

   Step 3: 从集合 中挑选出距离最小的点,这里会挑选出顶点C,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。

   Step 4: 从集合 中挑选出距离最小的点,这里会挑选出顶点D,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。

   Step 5: 从集合 中挑选出距离最小的点,这里会挑选出顶点B,集合 和 变更为: , ,根据最新的 ,重新计算 中顶点到源点A的最短距离。

   Step 6: 从集合 中挑选出距离最小的点,这里会挑选出顶点G,集合 和 变更为: , ,由于集合 为空,算法停止迭代,输出结果。

  以上就是对Dijkstra算法的计算过程的简单描述。

6. 最短路径 - Dijkstra算法

算法每次都查找距离起始点最近的点,那么剩下的点距离起始点的距离一定比当前点大。

1.选定A节点并初始化,如上述步骤3所示

2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 来更新U集合

3.这时候 A->B, A->C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的距离' + 'AB 距离' < 'A 到 C,E 的距离' ) ,如图所示这时候A->B距离 其实为 A->D->B

思路就是这样,往后就是大同小异了
算法结束

(图片来源于网络)

Dijkstra算法保证能找到一条从初始点到目标点的最短路径,只要所有的边都有一个非负的代价值。在上图中,粉红色的结点是初始结点,蓝色的是目标点,而类菱形的有色区域则是Dijkstra算法扫描过的区域。颜色最淡的区域是那些离初始点最远的,因而形成探测过程(exploration)的边境(frontier)。因而Dijkstra算法可以找到一条最短的路径,但是效率上并不高。

数据结构--Dijkstra算法最清楚的讲解

7. 数学建模第四章 图论 part4.2最短路径问题-Dijkstra算法

1.Dijkstra算法介绍

算法特点:

迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

算法的思路

Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。 

然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点, 

然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。 

然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

2、Dijkstra算法示例演示

我求下图,从顶点v1到其他各个顶点的最短路径.

首先第一步,我们先声明一个dis数组,该数组初始化的值为:

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。 

为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: < v3,v4 >,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果: 

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 < v3,v4> 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度:< v5,v4>和 < v5,v6>,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图: 

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下: 

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

热点内容
ftp端口映射路由 发布:2025-08-01 01:54:59 浏览:51
算法股市 发布:2025-08-01 01:53:37 浏览:84
银行密码器需要多少钱 发布:2025-08-01 01:53:33 浏览:832
mysql自动化脚本 发布:2025-08-01 01:53:01 浏览:351
老电脑怎么配置组装 发布:2025-08-01 01:45:09 浏览:453
如何用gcc语言编译代码 发布:2025-08-01 01:37:57 浏览:237
android的分区大小 发布:2025-08-01 01:37:54 浏览:12
linuxdeploy 发布:2025-08-01 01:17:01 浏览:353
linux服务器端口号怎么设置 发布:2025-08-01 01:15:22 浏览:14
干花胶怎么存储 发布:2025-08-01 01:11:14 浏览:524