当前位置:首页 » 操作系统 » 数据库并发量

数据库并发量

发布时间: 2023-02-22 07:54:26

⑴ 如何处理大量数据并发操作

处理大量数据并发操作可以采用如下几种方法:

1.使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。

2.数据库优化:表结构优化;sql语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接操作。

3.分离活跃数据:可以分为活跃用户和不活跃用户。

4.批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。

5.读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。

6.分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。

7.NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。

拓展资料:

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

⑵ mysql数据库最大能支持多少并发量

MySQL服务器的最大并发连接数是16384。

受服务器配置,及网络环境等制约,实际服务器支持的并发连接数会小一些。主要决定因素有:

1、服务器CPU及内存的配置。

2、网络的带宽。互联网连接中上行带宽的影响尤为明显。

(2)数据库并发量扩展阅读:

优化数据库结构:

组织数据库的schema、表和字段以降低I/O的开销,将相关项保存在一起,并提前规划,以便随着数据量的增长,性能可以保持较高的水平。

设计数据表应尽量使其占用的空间最小化,表的主键应尽可能短。·对于InnoDB表,主键所在的列在每个辅助索引条目中都是可复制的,因此如果有很多辅助索引,那么一个短的主键可以节省大量空间。

仅创建需要改进查询性能的索引。索引有助于检索,但是会增加插入和更新操作的执行时间。

InnoDB的ChangeBuffering特性:

InnoDB提供了changebuffering的配置,可减少维护辅助索引所需的磁盘I/O。大规模的数据库可能会遇到大量的表操作和大量的I/O,以保证辅助索引保持最新。当相关页面不在缓冲池里面时,InnoDB的changebuffer将会更改缓存到辅助索引条目。

从而避免因不能立即从磁盘读取页面而导致耗时的I/O操作。当页面被加载到缓冲池时,缓冲的更改将被合并,更新的页面之后会刷新到磁盘。这样做可提高性能,适用于MySQL5.5及更高版本。

⑶ 如何处理数据库并发问题

想要知道如何处理数据并发,自然需要先了解数据并发。

什么是数据并发操作呢?
就是同一时间内,不同的线程同时对一条数据进行读写操作。

在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行操作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。

针对这种情况,我们如何有效的处理数据并发呢?

第一种方案、数据库锁
从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。

这四种隔离级别分别是:

读未提交(Read Uncommitted)
读提交(Read Committed)
可重复读(Repeated Read)
串行化(Serializable)
当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?

脏读(dirty read)

当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去操作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的操作就会失去目标。

不可重复读(unrepeatable read)

一个事务中,两次读操作出来的同一条数据值不同,就是不可重复读。

例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B操作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。

幻读(phantom problem)

一个事务中,两次读操作出来的结果集不同,就是幻读。

例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。

那针对这些结果,不同的隔离级别可以干什么呢?

“读未提(Read Uncommitted)”能预防啥?啥都预防不了。

“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。

“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。

“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。

好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。

因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。

最有效的一种方式就是:缓存
想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。

还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写操作也变少了,执行效率也就大大提高了。

当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。

当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。

那么,读写分离就是另一种有效的方式了
当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。

我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写操作的性能。

⑷ 1000并发量高吗

不高。些基础的系统,都是直连数据库的,直接对数据库操作CRUD,对于MySQL而言,能够一秒承受2000的并发量差不多了,达到5000,估计就瘫了。那么在从前信息量还没有大爆炸之前,1000的并发并未常见,但是现在就不一样的,现在人人都接触了互联网,很多的app,网站,实时在线人数就达到了几万,甚至上百万,在大型的网络活动的时候,几千万的人在线并不是不可能的。

⑸ 数据库并发访问是什么意思是同时用数据库的人数么

数据库并发访问是指:可能会发生两个用户同时对一张表的同一条数据进行修改等操作,这是可能发生的情况。 和数据库连接人数是两个概念。前者是对数据操作的一种可能,后者是和版权相关。

⑹ 大型网站数据库系统,怎么连接那么多并发数量的

按我个人经验有以下几种方法:1.在连接数据库的时候可以优化,使用连接池。主要就是不要频繁地创建,销毁连接。这是很费时的一个操作。因此,使用连接池来代替普通的建立连接操作,能提高并发度。2. 使用缓存技术。并不是每次都需要去数据库里面查询的,我们其实可以把前一次的查询结果放在内存里,如果下一次用户来查询相同的内容,直接内存返回即可,不需要再次查询。这样可以大大降低查询频率。3.使用分布式技术,将数据库分布在多台服务器上,同时也将用户分区(如根据用户ID的哈希值分区),不同的服务器负责不同用户群,这样就能大大减少单台服务器的负载,使得整体的吞吐量提高。这几样技术可以同时使用,你的并发数量将获得非常大的提高。

⑺ mysql数据库超过并发量会pengding

mysql数据库超过并发量会pengding mysql数据库超过并发量会
主要是针对数据量很大,和并发访问量高的时候

经验一:

在开发过程中,我们经常会写

SELECT * FROM table WHERE 1 ORDER BY xxx DESC LIMIT 0,10

这样的语句用来分页

在有完美索引的情况 对xxx建立索引

前面几页会很快,但如果数据量达到100万级以后,我们查询最后一页

SELECT * FROM table WHERE 1 ORDER BY xxx DESC LIMIT 999990,10

这句执行就会很慢,同时有多人访问服务器就会掉 (这里不考虑缓存,因为内容更新太快,有时候缓存了达不到数据的更新的要求)

但如果我们把

SELECT * FROM table WHERE 1 ORDER BY xxx DESC LIMIT 999990,10

换成

SELECT * FROM table WHERE 1 ORDER BY xxx ASC LIMIT 0,10

这两个的MYSQL执行时间可是大大的不一样 当然要注意把这样取出来的结果用php重新排序一下

取得的一样是最后一页的数据,当然最中间的两页有部分数据一样

这时候最慢的只是最中间的部分,相对而言,访问最中间的人还是很少的

经验二:

例如论坛帖子列表的显示:

一般是SELECT * FROM table ORDER BY is_top DESC ,post_time DESC LIMIT 0,10这样的分页

两个order by 的执行是非常慢的,哪怕你有再好的索引,

我们的处理办法是 把is_top的数据CACHE住,毕竟is_top的数据量有限,更新这个缓存也容易

然后SQL一样是SELECT * FROM table ORDER BY post_time DESC LIMIT {$num},{$num2}

注意这个$num2 是减掉is_top的数量后的一个值,$num是is_top的数量

当然还要考虑is_top的数据量是不是有好几页,当前页的值是不是都在cache里面

经验三:

SELECT * FROM table ORDER BY RAND() LIMIT 100 这个ORDER BY RAND() 是非常慢的 能不用尽量不要用

处理办法是

1.用PHP生成数组后,然后用SELECT * FROM table WHERE id IN() WHERE IN 也比这个order by rand()快的多

2.如果数量信息不太重多,就用SELECT * FROM table WHERE 1 LIMIT 500 多取点数据,然后用php 处理数组

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:593
制作脚本网站 发布:2025-10-20 08:17:34 浏览:888
python中的init方法 发布:2025-10-20 08:17:33 浏览:581
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:765
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:684
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1012
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:255
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:113
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:806
python股票数据获取 发布:2025-10-20 07:39:44 浏览:712