当前位置:首页 » 操作系统 » 算法c代码实现

算法c代码实现

发布时间: 2023-03-01 12:15:18

‘壹’ c语言实现七种排序算法的演示代码是什么

(1)“冒泡法” x0dx0ax0dx0a冒泡法大家都较熟悉。其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a[i],则交换它们,一直比较到a[n]。同理对a[1],a[2],...a[n-1]处理,即完成排序。下面列出其代码:x0dx0ax0dx0avoid bubble(int *a,int n) /*定义两个参数:数组首地址与数组大小*/ x0dx0ax0dx0a{ x0dx0ax0dx0aint i,j,temp; x0dx0ax0dx0afor(i=0;ia[j]) { x0dx0ax0dx0atemp=a[i]; x0dx0ax0dx0aa[i]=a[j]; x0dx0ax0dx0aa[j]=temp; x0dx0ax0dx0a} x0dx0ax0dx0a} x0dx0ax0dx0a冒泡法原理简单,但其缺点是交换次数多,效率低。 x0dx0ax0dx0a下面介绍一种源自冒泡法但更有效率的方法“选择法”。 x0dx0ax0dx0a(2)“选择法” x0dx0ax0dx0a选择法循环过程与冒泡法一致,它还定义了记号k=i,然后依次把a[k]同后面元素比较,若a[k]>a[j],则使k=j.最后看看k=i是否还成立,不成立则交换a[k],a[i],这样就比冒泡法省下许多无用的交换,提高了效率。x0dx0ax0dx0avoid choise(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0aint i,j,k,temp; x0dx0ax0dx0afor(i=0;ia[j]) k=j; /*是k总是指向最小元素*/ x0dx0ax0dx0aif(i!=k) { /*当k!=i是才交换,否则a[i]即为最小*/ x0dx0ax0dx0atemp=a[i]; x0dx0ax0dx0aa[i]=a[k]; x0dx0ax0dx0aa[k]=temp; x0dx0ax0dx0a} x0dx0ax0dx0a} x0dx0ax0dx0a} x0dx0ax0dx0a选择法比冒泡法效率更高,但说到高效率,非“快速法”莫属,现在就让我们来了解它。 x0dx0ax0dx0a(3)“快速法” x0dx0ax0dx0a快速法定义了三个参数,(数组首地址*a,要排序数组起始元素下标i,要排序数组结束元素下标j). 它首先选一个数组元素(一般为a[(i+j)/2],即中间元素)作为参照,把比它小的元素放到它的左边,比它大的放在右边。然后运用递归,在将它左,右两个子数组排序,最后完成整个数组的排序。下面分析其代码:x0dx0ax0dx0avoid quick(int *a,int i,int j) x0dx0ax0dx0a{ x0dx0ax0dx0aint m,n,temp; x0dx0ax0dx0aint k; x0dx0ax0dx0am=i; x0dx0ax0dx0an=j; x0dx0ax0dx0ak=a[(i+j)/2]; /*选取的参照*/ x0dx0ax0dx0ado { x0dx0ax0dx0awhile(a[m]k&&n>i) n--; /* 从右到左找比k小的元素*/ x0dx0ax0dx0aif(m<=n) { /*若找到且满足条件,则交换*/ x0dx0ax0dx0atemp=a[m]; x0dx0ax0dx0aa[m]=a[n]; x0dx0ax0dx0aa[n]=temp; x0dx0ax0dx0am++; x0dx0ax0dx0an--; x0dx0ax0dx0a} x0dx0ax0dx0a}while(m<=n); x0dx0ax0dx0aif(mi) quick(a,i,n); x0dx0ax0dx0a} x0dx0ax0dx0a(4)“插入法” x0dx0ax0dx0a插入法是一种比较直观的排序方法。它首先把数组头两个元素排好序,再依次把后面的元素插入适当的位置。把数组元素插完也就完成了排序。x0dx0ax0dx0avoid insert(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0aint i,j,temp; x0dx0ax0dx0afor(i=1;i=0&&temp=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序。下面让我们来分析其代码:x0dx0ax0dx0avoid shell(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0aint i,j,k,x; x0dx0ax0dx0ak=n/2; /*间距值*/ x0dx0ax0dx0awhile(k>=1) { x0dx0ax0dx0afor(i=k;i=0&&x x0dx0ax0dx0a/*别偷懒,下面的"..."代表函数体,自己加上去哦!*/ x0dx0ax0dx0avoid bubble(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0a... x0dx0ax0dx0a} x0dx0ax0dx0avoid choise(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0a... x0dx0ax0dx0a} x0dx0ax0dx0avoid quick(int *a,int i,int j) x0dx0ax0dx0a{ x0dx0ax0dx0a... x0dx0ax0dx0a} x0dx0ax0dx0avoid insert(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0a... x0dx0ax0dx0a} x0dx0ax0dx0avoid shell(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0a... x0dx0ax0dx0a} x0dx0ax0dx0a/*为了打印方便,我们写一个print吧。*/[code]x0dx0ax0dx0avoid print(int *a,int n) x0dx0ax0dx0a{ x0dx0ax0dx0aint i; x0dx0ax0dx0afor(i=0;i

‘贰’ 算法编程:用c语言实现

解决这类问题可以使用 回溯 算法,代码如下:

#include<stdio.h>
#include<stdlib.h>

#defineM6//候选数字个数
#defineN5//组合后数字位数

intcheck(intresult[],inti)
{
for(intj=0;j<N;j++)
if(result[j]==i)
return0;

return1;
}

intlist(intnumbers[],intl,intresult[],intcount)
{
if(l>=N){

//将各位数组合成一个数
intnum=0;
for(inti=0;i<N;i++){
num=num*10+numbers[result[i]];
}

//判断这个数是否能被75整除
if(num%75==0){
printf("%d ",num);
count++;
}

returncount;
}

for(inti=0;i<M;i++){

if(!check(result,i)){
continue;
}

result[l]=i;

count=list(numbers,l+1,result,count);

result[l]=-1;
}

returncount;
}

intmain()
{
intnumbers[M]={1,2,5,7,8,9};
intresult[N]={-1,-1,-1,-1,-1};

intcount=list(numbers,0,result,0);

printf("共有%d个 ",count);

system("pause");
return0;
}

运行结果:

‘叁’ C语言 查找算法实现

#include

int main() {
int i,x,n,*result = NULL;
int a[10],low,high,mid;

scanf_s("%d",&n);
// 确保输入的数据是非递减的
for(i = 0 ; i < n && i < 10 ; i++) {
scanf_s("%d",&a[i]);
}

fflush(stdin); // 如果输入的数组元素多于10个,则废弃
scanf_s("%d",&x);

low = 0,high = n - 1;
while(low <= high) {
mid = (low + high) / 2;
if(x == a[mid]) {
result = &a[mid]; // 这里给出的是查找到该元素的指针
break;
}
else if(x < a[mid]) {
high = mid - 1;
}
else {
low = mid + 1;
}
}
if(result != NULL) {
printf("%d\n",*result);
}
else {
printf("no result\n");
}
return 0;
}

‘肆’ 如何用C语言实现RSA算法

RSA算法它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数
p, q, r 这三个数便是 private key

接着, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了
再来, 计算 n = pq
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小于 n, 然后分段编码
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码后的资料

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
于是乎, 解码完毕 等会会证明 c 和 a 其实是相等的 :)

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b
他如果要解码的话, 必须想办法得到 r
所以, 他必须先对 n 作质因数分解
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。

三、RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

四、RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公
钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用
One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是
第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人
们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA
的重大缺陷是无法从理论上把握它的保密性能
如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600
bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目
前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

C语言实现

#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*输入要加密的明文数字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*输入要解密的密文数字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}

‘伍’ 对于循环队列,试写出求队列含有多少个元素的算法,并将算法用C代码实现。

对于循环队列,求队列含有多少个元素的算法如下:

typedef struct
{
int tail,head;
int a[Max];
}queue;

void enqueue(int key,queue&q)
{
q.a[q.tail]=key;
q.tail=(q.tail+1)%Max;
}

int dequeue(queue&q)
{
int key;
key=q.a[q.head];
q.head=(q.head+1)%Max;
return key;
}

(5)算法c代码实现扩展阅读:

计算循环队列的元素个数:(尾-头+表长)%表长

队列头指针为来front,队列尾指针为rear,队列容量为M,则元素个数为|rear-front+M|%M,注意,这个自%是求余运算。

设f为队头,r为队尾,m为队长,a为元素个数,则1. f>r时,a=m+r-f; 2. f<=r时,a=r-f

‘陆’ kruskal算法实现 c代码

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

/* 定义边(x,y),权为w */
typedef struct
{
int x, y;
int w;
}edge;

edge e[MAX];
/* rank[x]表示x的秩 */
int rank[MAX];
/* father[x]表示x的父节点 */
int father[MAX];
int sum;

/* 比较函数,按权值(相同则按x坐标)非降序排序 */
int cmp(const void *a, const void *b)
{
if ((*(edge *)a).w == (*(edge *)b).w)
{
return (*(edge *)a).x - (*(edge *)b).x;
}
return (*(edge *)a).w - (*(edge *)b).w;
}

/* 初始化集合 */
void Make_Set(int x)
{
father[x] = x;
rank[x] = 0;
}

/* 查找x元素所在的集合,回溯时压缩路径 */
int Find_Set(int x)
{
if (x != father[x])
{
father[x] = Find_Set(father[x]);
}
return father[x];
}

/* 合并x,y所在的集合 */
void Union(int x, int y, int w)
{

if (x == y) return;
/* 将秩较小的树连接到秩较大的树后 */
if (rank[x] > rank[y])
{
father[y] = x;
}
else
{
if (rank[x] == rank[y])
{
rank[y]++;
}
father[x] = y;
}
sum += w;
}

/* 主函数 */
int main()
{
int i, n;
int x, y;
char chx, chy;

/* 读取边的数目 */
scanf("%d", &n);
getchar();

/* 读取边信息并初始化集合 */
for (i = 0; i < n; i++)
{
scanf("%c %c %d", &chx, &chy, &e[i].w);
getchar();
e[i].x = chx - 'A';
e[i].y = chy - 'A';
Make_Set(i);
}

/* 将边排序 */
qsort(e, n, sizeof(edge), cmp);

sum = 0;

for (i = 0; i < n; i++)
{
x = Find_Set(e[i].x);
y = Find_Set(e[i].y);
if (x != y)
{
printf("%c - %c : %d\n", e[i].x + 'A', e[i].y + 'A', e[i].w);
Union(x, y, e[i].w);
}
}

printf("Total:%d\n", sum);
//system("pause");
return 0;
}

‘柒’ 回溯算法,用c语言实现

这个算法应该不难,基本和全排列的算法类似,只不过判断条件不是n=1, 而是在判断已经取得的数的和>=M为终止条件。

具体的算法,我给个大概流程吧

int lst[N]; //保存选取的数
int index = 0; //lst中最后的一个数的位置

func(W, N)
{
if(N == 0) //遍历完毕 返回
return;
for(i=0 to N)
{
if( W[i][1] != -1 ) //判断是否已经读取当前值
{
lst[index++] = W[i][0] //当前值加入到保存数组
W[i][1] = -1; //设置当前值已经读取,不可再读
if(check() == 0)
{
func(W, N-1); //大小不够M,继续往下读
}
else if(check() == 1)
{
print(lst); //和为M,输出
}
lst[--index] = 0; //回溯,寻找下一组解
W[i][1] = 0;
}
}
}

check()
{
if(sum(lst) > W)
return -1;

if(sum(lst) < W)
return 0;
return 1;
}

‘捌’ 请教MD5算法 用C语言实现

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#ifdefined(__APPLE__)
#defineCOMMON_DIGEST_FOR_OPENSSL
#include<CommonCrypto/CommonDigest.h>
#defineSHA1CC_SHA1
#else
#include<openssl/md5.h>
#endif

//这是我自己写的函数,用于计算MD5
//参数str:要转换的字符串
//参数lengthL:字符串的长度可以用strlen(str)直接获取参数str的长度
//返回值:MD5字符串
char*str2md5(constchar*str,intlength){
intn;
MD5_CTXc;
unsignedchardigest[16];
char*out=(char*)malloc(33);

MD5_Init(&c);

while(length>0){
if(length>512){
MD5_Update(&c,str,512);
}else{
MD5_Update(&c,str,length);
}
length-=512;
str+=512;
}

MD5_Final(digest,&c);

for(n=0;n<16;++n){
snprintf(&(out[n*2]),16*2,"%02x",(unsignedint)digest[n]);
}

returnout;
}

intmain(intargc,char**argv){
char*output=str2md5("hello",strlen("hello"));

printf("%s ",output);
//上面会输出hello的MD5字符串:
//
free(output);
return0;
}

‘玖’ 怎样用C语言实现FFT算法啊

1、二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。

2、例程:

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#defineN1000
/*定义复数类型*/
typedefstruct{
doublereal;
doubleimg;
}complex;
complexx[N],*W;/*输入序列,变换核*/
intsize_x=0;/*输入序列的大小,在本程序中仅限2的次幂*/
doublePI;/*圆周率*/
voidfft();/*快速傅里叶变换*/
voidinitW();/*初始化变换核*/
voidchange();/*变址*/
voidadd(complex,complex,complex*);/*复数加法*/
voidmul(complex,complex,complex*);/*复数乘法*/
voidsub(complex,complex,complex*);/*复数减法*/
voidoutput();
intmain(){
inti;/*输出结果*/
system("cls");
PI=atan(1)*4;
printf("Pleaseinputthesizeofx: ");
scanf("%d",&size_x);
printf("Pleaseinputthedatainx[N]: ");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i].real,&x[i].img);
initW();
fft();
output();
return0;
}
/*快速傅里叶变换*/
voidfft(){
inti=0,j=0,k=0,l=0;
complexup,down,proct;
change();
for(i=0;i<log(size_x)/log(2);i++){/*一级蝶形运算*/
l=1<<i;
for(j=0;j<size_x;j+=2*l){/*一组蝶形运算*/
for(k=0;k<l;k++){/*一个蝶形运算*/
mul(x[j+k+l],W[size_x*k/2/l],&proct);
add(x[j+k],proct,&up);
sub(x[j+k],proct,&down);
x[j+k]=up;
x[j+k+l]=down;
}
}
}
}
/*初始化变换核*/
voidinitW(){
inti;
W=(complex*)malloc(sizeof(complex)*size_x);
for(i=0;i<size_x;i++){
W[i].real=cos(2*PI/size_x*i);
W[i].img=-1*sin(2*PI/size_x*i);
}
}
/*变址计算,将x(n)码位倒置*/
voidchange(){
complextemp;
unsignedshorti=0,j=0,k=0;
doublet;
for(i=0;i<size_x;i++){
k=i;j=0;
t=(log(size_x)/log(2));
while((t--)>0){
j=j<<1;
j|=(k&1);
k=k>>1;
}
if(j>i){
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}
}
/*输出傅里叶变换的结果*/
voidoutput(){
inti;
printf("Theresultareasfollows ");
for(i=0;i<size_x;i++){
printf("%.4f",x[i].real);
if(x[i].img>=0.0001)printf("+%.4fj ",x[i].img);
elseif(fabs(x[i].img)<0.0001)printf(" ");
elseprintf("%.4fj ",x[i].img);
}
}
voidadd(complexa,complexb,complex*c){
c->real=a.real+b.real;
c->img=a.img+b.img;
}
voidmul(complexa,complexb,complex*c){
c->real=a.real*b.real-a.img*b.img;
c->img=a.real*b.img+a.img*b.real;
}
voidsub(complexa,complexb,complex*c){
c->real=a.real-b.real;
c->img=a.img-b.img;
}
热点内容
python中cmp 发布:2025-08-16 23:47:44 浏览:598
java静态单例 发布:2025-08-16 23:34:52 浏览:329
平板拷贝如何缓存 发布:2025-08-16 23:19:05 浏览:601
缤越混动有哪些配置 发布:2025-08-16 23:17:57 浏览:249
删除linux文件后 发布:2025-08-16 23:09:04 浏览:649
采访时的采访问题 发布:2025-08-16 23:07:27 浏览:110
电脑客户端登录服务器怎么清除 发布:2025-08-16 22:55:46 浏览:527
压缩小木条 发布:2025-08-16 22:55:41 浏览:22
存款利率算法 发布:2025-08-16 22:48:44 浏览:588
php开发api接口 发布:2025-08-16 22:47:48 浏览:839