当前位置:首页 » 操作系统 » 算法优化函数

算法优化函数

发布时间: 2023-03-05 23:16:00

1. 我想要一个完整的用粒子群算法优化函数的程序,随便哪个函数都行,一定要对的,大神帮忙啊

今天有用过的一个超简单的,求一个方程的最大值。
程序一:
function F = fitness( x )
F = x^3-60*x^2+900*x+100; %0<x<=31
F = -F;%求-F的最小值,就是求F的最大值。
程序二:
function [xm,fv] = PSO(fitness,N,c1,c2,w,M,D)
%[xm,fv] = PSO(@fitness,40,2,2,0.8,1000,1)
%
% 求解优化问题
% fitness 待优化目标函数
% N 粒子数目,
% cX 学习因子
% W 惯性权重
% M 最大迭代次数
% D 自由变量的个数
% xm 目标函数取最小值时的自由变量
% fv 目标函数的最小值
% Detailed explanation goes here
tic;
format long;
%------step1.初始化种群的个体------------
x = zeros(N,D);
v = zeros(N,D);
for i=1:N

for j=1:D

x(i,j)=31*rand; %随机初始化位置 x在[0 ,31]之间

v(i,j)=rand; %随机初始化速度

end

end

%------step2.先计算各个粒子的适应度,并初始化Pi和PgPg为全局最优-------------
p = zeros(N,1);
%y = zeros(N,D);
for i=1:N

p(i)=fitness(x(i,:));

%y(i,:)=x(i,:);

end
y = x;
pg = x(N,:); %Pg为全局最优

for i=1:(N-1)

if fitness(x(i,:))<fitness(pg)

pg=x(i,:);

end

end

%------step3.进入主要循环,按照公式依次迭代------------
%Pbest = zeros(M,1);
for t=1:M

for i=1:N

v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
for k=1:D
if v(i,k) > 2 %2=vmax
v(i,k) = 2;
end
end
x(i,:)=x(i,:)+v(i,:);
for k=1:D
if x(i,k) > 31 %31=xmax
x(i,k) = 31;
end
end

if fitness(x(i,:))<p(i)

p(i)=fitness(x(i,:));

y(i,:)=x(i,:);

end

if p(i)<fitness(pg)

pg=y(i,:);

end

end

%Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
toc;

2. 算法优化有哪些主要方法和作用

优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。
对于连续和线性等较简单的问题,可以选择一些经典算法,如梯度、Hessian
矩阵、拉格朗日乘数、单纯形法、梯度下降法等。
而对于更复杂的问题,则可考虑用一些智能优化算法,如遗传算法和蚁群算法,此外还包括模拟退火、禁忌搜索、粒子群算法等。

3. matlab上的遗传算法函数优化

用ga函数,ga函数就是遗传算法的函数,它的调用格式为:
x
=
ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)
fitnessfcn就是待优化函数,nvars为变量个数,然后后面的lb是下界,ub是上界,你这个问题就需要这4个位置的参数,其他位置的参数用[]代替就行,由于ga函数默认是求待优化函数的最小值,所以要想求最大值需要把待优化函数取负,即编写为
function
y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把这个函数存为myfun.m,然后在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
会返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.8506
由于遗传算法的原理其实是在取值范围内随机选择初值然后进行遗传,所以可能每次运行给出的值都不一样,比如再运行一次会返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.6507
这个具体原因需要参考遗传算法的有关资料

4. L-M 优化算法优化哪种函数最好

老哥你竟然知道lm下山怎么会问这么弱智的问题呢

拟合和寻优,非线性的函数都可以用lm

LM算法需要对每一个待估参数求偏导,所以,如果你的拟合函数 f 非常复杂,或者待估参数相当地多,那么可能不适合使用LM算法,而可以选择Powell算法。LM主要有信赖区间可以变邻域搜索,收敛速度块。

5. 优化算法总结

本文介绍一下机器学习和深度学习中常用的优化算法和优化器以及一些其他我知道的优化算法,部分算法我也没有搞懂,就先记录下来以后慢慢研究吧.*_*.

1.梯度下降算法(Gradient Descent)

梯度下降法可以参考我另一篇文章 机器学习-线性回归 里的讲解,这里就不在重复叙述.这里需要强调一下,深度学习里常用的SGD,翻译过来是随机梯度下降,但是实质是mini-batch梯度下降(mini-batch-gd),或者说是两者的结合更准确一些.

SGD的优点是,算法简单,计算量小,在函数为凸函数时可以找到全局最优解.所以是最常用的优化算法.缺点是如果函数不是凸函数的话,很容易进入到局部最优解而无法跳出来.同时SGD在选择学习率上也是比较困难的.

2.牛顿法

牛顿法和拟牛顿法都是求解无约束最优化问题的常用方法,其中牛顿法是迭代算法,每一步需要求解目标函数的海森矩阵的逆矩阵,计算比较复杂.

牛顿法在求解方程根的思想:在二维情况下,迭代的寻找某一点x,寻找方法是随机一个初始点x_0,目标函数在该点x_0的切线与x坐标轴的交点就是下一个x点,也就是x_1.不断迭代寻找x.其中切线的斜率为目标函数在点x_0的导数(梯度),切必过点(x_0,f(x_0)).所以迭代的方程式如图1,为了求该方程的极值点,还需要令其导数等于0,也就是又求了一次导数,所以需要用到f(x)的二阶导数.

在最优化的问题中,牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数f, 求函数ff的极大极小问题, 可以转化为求解函数f导数等于0的问题, 这样求可以把优化问题看成方程求解问题(f的导数等于0). 剩下的问题就和牛顿法求解方程根的思想很相似了.

目标函数的泰勒展开式:

化简后:

这样就得到了与图1相似的公式,这里是二维的,在多维空间上,求二阶导数就是求海森矩阵,因为是分母,所以还需要求海森矩阵的逆矩阵.

牛顿法和SGD的区别:

牛顿法是二阶求导,SGD是一阶求导,所以牛顿法要收敛的更快一些.SGD只考虑当前情况下梯度下降最快的方向,而牛顿法不仅考虑当前梯度下降最快,还有考虑下一步下降最快的方向.

牛顿法的优点是二阶求导下降速度快,但是因为是迭代算法,每一步都需要求解海森矩阵的逆矩阵,所以计算复杂.

3.拟牛顿法(没搞懂,待定)

考虑到牛顿法计算海森矩阵比较麻烦,所以它使用正定矩阵来代替海森矩阵的逆矩阵,从而简化了计算过程.

常用的拟牛顿法有DFP算法和BFGS算法.

4.共轭梯度法(Conjugate Gradient)

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法计算海森矩阵并求逆的缺点.共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一.

5.拉格朗日法

参考SVM里的讲解 机器学习-SVM

6.动量优化法(Momentum)

动量优化法主要是在SGD的基础上,加入了历史的梯度更新信息或者说是加入了速度更新.SGD虽然是很流行的优化算法,但是其学习过程很慢,因为总是以同样的步长沿着梯度下降的方向.所以动量是为了加速学习的方法.

其中第一行的减号部分是计算当前的梯度,第一行是根据梯度更新速度v,而α是新引进的参数,在实践中,α的一般取值为 0.5,0.9 和 0.99.和学习率 一样,α 也会随着时间不断调整.一般初始值是一个较小的值,随后会慢慢变大.

7.Nesterov加速梯度(NAG, Nesterov accelerated gradient)

NAG是在动量优化算法的基础上又进行了改进.根据下图可以看出,Nesterov 动量和标准动量之间的区别体现在梯度计算上, Nesterov 动量中,梯度计算在施加当前速度之后.因此,Nesterov 动量可以解释为往标准动量方法中添加了一个校正因子

8.AdaGrad算法

AdaGrad算法,自适应优化算法的一种,独立地适应所有模型参数的学习率,缩放每个参数反比于其所有梯度历史平均值总和的平方根.具有代价函数最大梯度的参数相应地有个快速下降的学习率,而具有小梯度的参数在学习率上有相对较小的下降.通俗一点的讲,就是根据实际情况更改学习率,比如模型快要收敛的时候,学习率步长就会小一点,防止跳出最优解.

其中g是梯度,第一行的分母是计算累计梯度的平方根, 是为了防止分母为0加上的极小常数项,α是学习率.

Adagrad的主要优点是不需要人为的调节学习率,它可以自动调节.但是依然需要设置一个初始的全局学习率.缺点是随着迭代次数增多,学习率会越来越小,最终会趋近于0.

9.RMSProp算法

RMSProp修改 AdaGrad 以在非凸设定下效果更好,改变梯度积累为指数加权的移动平均.AdaGrad旨在应用于凸问题时快速收敛.

10.AdaDelta算法

11.Adam算法

Adam是Momentum和RMSprop的结合体,也就是带动量的自适应优化算法.

12.Nadam算法

13.模拟退火算法

14.蚁群算法

15.遗传算法

动量是为了加快学习速度,而自适应是为了加快收敛速度,注意学习速度快不一定收敛速度就快,比如步长大学习速度快,但是很容易跳出极值点,在极值点附近波动,很难达到收敛.

未完待定....

参考:

《统计学习方法》  李航    着

《深度学习》  花书

6. 关于粒子群算法的目标函数优化,优化函数如下图

function main()
clc;clear all;close all;
tic; %程序运行计时
E0=0.001; %允许误差
MaxNum=100; %粒子最大迭代次数
narvs=1; %目标函数的自变量个数
particlesize=30; %粒子群规模
c1=2; %每个粒子的个体学习因子,也称为加速常数
c2=2; %每个粒子的社会学习因子,也称为加速常数
w=0.6; %惯性因子
vmax=0.8; %粒子的最大飞翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飞翔速度
%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,
%目标函数是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定义适应度函数如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定义的适应度函数会使程序运行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;

7. 想知道优化算法是什么

优化算法是通过改善计算方式来最小化或最大化损失函数E(x)。模型内部有些参数是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数就形成了损失函数E(x),比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。

优化算法分的分类

一阶优化算法是使用各参数的梯度值来最小化或最大化损失函数E(x),最常用的一阶优化算法是梯度下降。函数梯度导数dy/dx的多变量表达式,用来表示y相对于x的瞬时变化率。

二阶优化算法是使用了二阶导数也叫做Hessian方法来最小化或最大化损失函数,由于二阶导数的计算成本很高,所以这种方法并没有广泛使用。

8. 关于粒子群算法的目标函数优化,优化函数如下图

粒子群算法的目标函数极小点程序
( ) 2 用牛顿法求 f ( X ) ? x12 ? 2 x2 ? ln(x1 x2 ? 1) 的极小点,分别设 X 0 =[2,1.5]T

和 X(0)=[1.5,2]T,终止条件为 g ? 10?5 。
解:先求得 f(x)的梯度? 和海瑟矩阵?2 , 根据牛顿法的迭代公式 +1 = ? ?2 ?1 ? ( = 0,1,2 … … ) ?6 经过反复迭代直至||? ||≤ 10 ,得到极小值。 牛顿法的 M 文件如下:
syms x1 x2 f=x1^2+2*x2^2-log(x1*x2-1); v=[x1,x2]; x01=2; x02=1.5; g=jacobian(f,v); G=jacobian(g,v); g1=subs(subs(g,x01),x02); disp(g1); G1=subs(subs(G,x01),x02); dd=norm(g1); dd=vpa(dd,7); x1=x01;x2=x02; x=[x1,x2]; n=0; while(dd>0.000001) G1=inv(G1); x=x-g1*G1; g1=subs(subs(g,x(1)),x(2)); G1=subs(subs(G,x(1)),x(2)); x=x; dd=norm(g1); dd=vpa(dd,7); n=n+1; end x1=x(1);x2=x(2); f=x1^2+2*x2^2-log(x1*x2-1); f=vpa(f,7); disp('f='); disp(f); x=vpa(x,7); disp('x='); disp(x); disp('n=')

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:595
制作脚本网站 发布:2025-10-20 08:17:34 浏览:889
python中的init方法 发布:2025-10-20 08:17:33 浏览:583
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:766
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:687
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1015
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:258
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:117
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:808
python股票数据获取 发布:2025-10-20 07:39:44 浏览:715