广告过滤算法
‘壹’ 推荐算法简介
写在最前面:本文内容主要来自于书籍《推荐系统实践》和《推荐系统与深度学习》。
推荐系统是目前互联网世界最常见的智能产品形式。从电子商务、音乐视频网站,到作为互联网经济支柱的在线广告和新颖的在线应用推荐,到处都有推荐系统的身影。推荐算法是推荐系统的核心,其本质是通过一定的方式将用户和物品联系起来,而不同的推荐系统利用了不同的方式。
推荐系统的主要功能是以个性化的方式帮助用户从极大的搜索空间中快速找到感兴趣的对象。因此,目前所用的推荐系统多为个性化推荐系统。个性化推荐的成功应用需要两个条件:
在推荐系统的众多算法中,基于协同的推荐和基于内容的推荐在实践中得到了最广泛的应用。本文也将从这两种算法开始,结合时间、地点上下文环境以及社交环境,对常见的推荐算法做一个简单的介绍。
基于内容的算法的本质是对物品内容进行分析,从中提取特征,然后基于用户对何种特征感兴趣来推荐含有用户感兴趣特征的物品。因此,基于内容的推荐算法有两个最基本的要求:
下面我们以一个简单的电影推荐来介绍基于内容的推荐算法。
现在有两个用户A、B和他们看过的电影以及打分情况如下:
其中问好(?)表示用户未看过。用户A对《银河护卫队 》《变形金刚》《星际迷航》三部科幻电影都有评分,平均分为 4 .7 分 ( (5+4+5 ) / 3=4.7 );对《三生三世》《美人鱼》《北京遇上西雅图》三部爱情电影评分平均分为 2.3 分 ( ( 3十2+2 ) /3=2.3 )。现在需要给A推荐电影,很明显A更倾向于科幻电影,因此推荐系统会给A推荐独立日。而对于用户B,通过简单的计算我们可以知道更喜欢爱情电影,因此给其推荐《三生三世》。当然,在实际推荐系统中,预测打分比这更加复杂些,但是其原理是一样的。
现在,我们可以将基于内容的推荐归纳为以下四个步骤:
通过上面四步就能快速构建一个简单的推荐系统。基于内容的推荐系统通常简单有效,可解释性好,没有物品冷启动问题。但他也有两个明显的缺点:
最后,顺便提一下特征提取方法:对于某些特征较为明确的物品,一般可以直接对其打标签,如电影类别。而对于文本类别的特征,则主要是其主题情感等,则些可以通过tf-idf或LDA等方法得到。
基于协同的算法在很多地方也叫基于邻域的算法,主要可分为两种:基于用户的协同算法和基于物品的协同算法。
啤酒和尿布的故事在数据挖掘领域十分有名,该故事讲述了美国沃尔玛超市统计发现啤酒和尿布一起被购买的次数非常多,因此将啤酒和尿布摆在了一起,最后啤酒和尿布的销量双双增加了。这便是一个典型的物品协同过滤的例子。
基于物品的协同过滤指基于物品的行为相似度(如啤酒尿布被同时购买)来进行物品推荐。该算法认为,物品A和物品B具有很大相似度是因为喜欢物品A的用户大都也喜欢物品B。
基于物品的协同过滤算法主要分为两步:
基于物品的协同过滤算法中计算物品相似度的方法有以下几种:
(1)基于共同喜欢物品的用户列表计算。
此外,John S. Breese再其论文中还提及了IUF(Inverse User Frequence,逆用户活跃度)的参数,其认为活跃用户对物品相似度的贡献应该小于不活跃的用户,应该增加IUF参数来修正物品相似度的公式:
上面的公式只是对活跃用户做了一种软性的惩罚, 但对于很多过于活跃的用户, 比如某位买了当当网80%图书的用户, 为了避免相似度矩阵过于稠密, 我们在实际计算中一般直接忽略他的兴趣列表, 而不将其纳入到相似度计算的数据集中。
(2)基于余弦相似度计算。
(3)热门物品的惩罚。
从上面(1)的相似度计算公式中,我们可以发现当物品 i 被更多人购买时,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都会增长。对于热门物品,分子 N(i) ∩ N(j) 的增长速度往往高于 N(i),这就会使得物品 i 和很多其他的物品相似度都偏高,这就是 ItemCF 中的物品热门问题。推荐结果过于热门,会使得个性化感知下降。以歌曲相似度为例,大部分用户都会收藏《小苹果》这些热门歌曲,从而导致《小苹果》出现在很多的相似歌曲中。为了解决这个问题,我们对于物品 i 进行惩罚,例如下式, 当α∈(0, 0.5) 时,N(i) 越小,惩罚得越厉害,从而使热门物品相关性分数下降( 博主注:这部分未充分理解 ):
此外,Kary pis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化, 可以提高推荐的准确率。 其研究表明, 如果已经得到了物品相似度矩阵w, 那么可以用如下公式得到归一化之后的相似度矩阵w':
归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。一般来说,物品总是属于很多不同的类,每一类中的物品联系比较紧密。假设物品分为两类——A和B, A类物品之间的相似度为0.5, B类物品之间的相似度为0.6, 而A类物品和B类物品之间的相似度是0.2。 在这种情况下, 如果一个用户喜欢了5个A类物品和5个B类物品, 用ItemCF给他进行推荐, 推荐的就都是B类物品, 因为B类物品之间的相似度大。 但如果归一化之后, A类物品之间的相似度变成了1, B类物品之间的相似度也是1, 那么这种情况下, 用户如果喜欢5个A类物品和5个B类物品, 那么他的推荐列表中A类物品和B类物品的数目也应该是大致相等的。 从这个例子可以看出, 相似度的归一化可以提高推荐的多样性。
那么,对于两个不同的类,什么样的类其类内物品之间的相似度高,什么样的类其类内物品相似度低呢?一般来说,热门的类其类内物品相似度一般比较大。如果不进行归一化,就会推荐比较热门的类里面的物品,而这些物品也是比较热门的。因此,推荐的覆盖率就比较低。相反,如果进行相似度的归一化,则可以提高推荐系统的覆盖率。
最后,利用物品相似度矩阵和用户打过分的物品记录就可以对一个用户进行推荐评分:
基于用户的协同算法与基于物品的协同算法原理类似,只不过基于物品的协同是用户U购买了A物品,会计算经常有哪些物品与A一起购买(也即相似度),然后推荐给用户U这些与A相似的物品。而基于用户的协同则是先计算用户的相似性(通过计算这些用户购买过的相同的物品),然后将这些相似用户购买过的物品推荐给用户U。
基于用户的协同过滤算法主要包括两个步骤:
步骤(1)的关键是计算用户的兴趣相似度,主要是利用用户的行为相似度计算用户相似度。给定用户 u 和 v,N(u) 表示用户u曾经有过正反馈(譬如购买)的物品集合,N(v) 表示用户 v 曾经有过正反馈的物品集合。那么我们可以通过如下的 Jaccard 公式简单的计算 u 和 v 的相似度:
或通过余弦相似度:
得到用户之间的相似度之后,UserCF算法会给用户推荐和他兴趣最相似的K个用户喜欢的物品。如下的公式度量了UserCF算法中用户 u 对物品 i 的感兴趣程度:
首先回顾一下UserCF算法和ItemCF算法的推荐原理:UserCF给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品, 而ItemCF给用户推荐那些和他之前喜欢的物品具有类似行为的物品。
(1)从推荐场景考虑
首先从场景来看,如果用户数量远远超过物品数量,如购物网站淘宝,那么可以考虑ItemCF,因为维护一个非常大的用户关系网是不容易的。其次,物品数据一般较为稳定,因此物品相似度矩阵不必频繁更新,维护代价较小。
UserCF的推荐结果着重于反应和用户兴趣相似的小群体的热点,而ItemCF的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反应了用户所在小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反应了用户自己的个性传承。因此UserCF更适合新闻、微博或微内容的推荐,而且新闻内容更新频率非常高,想要维护这样一个非常大而且更新频繁的表无疑是非常难的。
在新闻类网站中,用户的兴趣爱好往往比较粗粒度,很少会有用户说只看某个话题的新闻,而且往往某个话题也不是每天都会有新闻。 个性化新闻推荐更强调新闻热点,热门程度和时效性是个性化新闻推荐的重点,个性化是补充,所以 UserCF 给用户推荐和他有相同兴趣爱好的人关注的新闻,这样在保证了热点和时效性的同时,兼顾了个性化。
(2)从系统多样性(也称覆盖率,指一个推荐系统能否给用户提供多种选择)方面来看,ItemCF的多样性要远远好于UserCF,因为UserCF更倾向于推荐热门物品。而ItemCF具有较好的新颖性,能够发现长尾物品。所以大多数情况下,ItemCF在精度上较小于UserCF,但其在覆盖率和新颖性上面却比UserCF要好很多。
在介绍本节基于矩阵分解的隐语义模型之前,让我们先来回顾一下传统的矩阵分解方法SVD在推荐系统的应用吧。
基于SVD矩阵分解在推荐中的应用可分为如下几步:
SVD在计算前会先把评分矩阵 A 缺失值补全,补全之后稀疏矩阵 A 表示成稠密矩阵,然后将分解成 A' = U∑V T 。但是这种方法有两个缺点:(1)补成稠密矩阵后需要耗费巨大的储存空间,对这样巨大的稠密矩阵进行储存是不现实的;(2)SVD的计算复杂度很高,对这样大的稠密矩阵中进行计算式不现实的。因此,隐语义模型就被发明了出来。
更详细的SVD在推荐系统的应用可参考 奇异值分解SVD简介及其在推荐系统中的简单应用 。
隐语义模型(Latent Factor Model)最早在文本挖掘领域被提出,用于找到文本的隐含语义。相关的算法有LSI,pLSA,LDA和Topic Model。本节将对隐语义模型在Top-N推荐中的应用进行详细介绍,并通过实际的数据评测该模型。
隐语义模型的核心思想是通过隐含特征联系用户兴趣和物品。让我们通过一个例子来理解一下这个模型。
现有两个用户,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书,而用户B的兴趣比较集中在数学和机器学习方面。那么如何给A和B推荐图书呢?
我们可以对书和物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品。简言之,这个基于兴趣分类的方法大概需要解决3个问题:
对于第一个问题的简单解决方案是找相关专业人员给物品分类。以图书为例,每本书出版时,编辑都会给出一个分类。但是,即使有很系统的分类体系,编辑给出的分类仍然具有以下缺点:(1)编辑的意见不能代表各种用户的意见;(2)编辑很难控制分类的细粒度;(3)编辑很难给一个物品多个分类;(4)编辑很难给一个物品多个分类;(5)编辑很难给出多个维度的分类;(6)编辑很难决定一个物品在某一个类别中的权重。
为了解决上述问题,研究员提出可以从数据出发,自动找到那些分类,然后进行个性化推荐。隐语义模型由于采用基于用户行为统计的自动聚类,较好地解决了上面提出的5个问题。
LFM将矩阵分解成2个而不是3个:
推荐系统中用户和物品的交互数据分为显性反馈和隐性反馈数据。隐式模型中多了一个置信参数,具体涉及到ALS(交替最小二乘法,Alternating Least Squares)中对于隐式反馈模型的处理方式——有的文章称为“加权的正则化矩阵分解”:
一个小细节:在隐性反馈数据集中,只有正样本(正反馈)没有负反馈(负样本),因此如何给用户生成负样本来进行训练是一个重要的问题。Rong Pan在其文章中对此进行了探讨,对比了如下几种方法:
用户行为很容易用二分图表示,因此很多图算法都可以应用到推荐系统中。基于图的模型(graph-based model)是推荐系统中的重要内容。很多研究人员把基于领域的模型也称为基于图的模型,因为可以把基于领域的模型看作基于图的模型的简单形式。
在研究基于图的模型之前,需要将用户行为数据表示成图的形式。本节的数据是由一系列用户物品二元组 (u, i) 组成的,其中 u 表示用户对物品 i 产生过行为。
令 G(V, E) 表示用户物品二分图,其中 V=V U UV I 由用户顶点 V U 和物品节点 V I 组成。对于数据集中每一个二元组 (u, i) ,图中都有一套对应的边 e(v u , v i ),其中 v u ∈V U 是用户对应的顶点,v i ∈V I 是物品i对应的顶点。如下图是一个简单的物品二分图,其中圆形节点代表用户,方形节点代表物品,用户物品的直接连线代表用户对物品产生过行为。比如下图中的用户A对物品a、b、d产生过行为。
度量图中两个顶点之间相关性的方法很多,但一般来说图中顶点的相关性主要取决于下面3个因素:
而相关性高的一对顶点一般具有如下特征:
举个例子,如下图,用户A和物品c、e没有边直连,但A可通过一条长度为3的路径到达c,而Ae之间有两条长度为3的路径。那么A和e的相关性要高于顶点A和c,因而物品e在用户A的推荐列表中应该排在物品c之前,因为Ae之间有两条路径。其中,(A,b,C,e)路径经过的顶点的出度为(3,2,2,2),而 (A,d,D,e) 路径经过了一个出度比较大的顶点D,所以 (A,d,D,e) 对顶点A与e之间相关性的贡献要小于(A,b,C,e)。
基于上面3个主要因素,研究人员设计了很多计算图中顶点相关性的方法,本节将介绍一种基于随机游走的PersonalRank算法。
假设要给用户u进行个性化推荐,可以从用户u对应的节点 v u 开始在用户物品二分图上进行随机游走。游走到任一节点时,首先按照概率α决定是继续游走还是停止这次游走并从 v u 节点重新开始游走。若决定继续游走,则从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品被访问到的概率会收敛到一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。
上述算法可以表示成下面的公式:
虽然通过随机游走可以很好地在理论上解释PersonalRank算法,但是该算法在时间复杂度上有明显的缺点。因为在为每个用户进行推荐时,都需要在整个用户物品二分图上进行迭代,知道所有顶点的PR值都收敛。这一过程的时间复杂度非常高,不仅无法在线进行实时推荐,离线计算也是非常耗时的。
有两种方法可以解决上面PersonalRank时间复杂度高的问题:
(1)减少迭代次数,在收敛之前停止迭代。但是这样会影响最终的精度。
(2)从矩阵论出发,重新涉及算法。另M为用户物品二分图的转移概率矩阵,即:
网络社交是当今社会非常重要甚至可以说是必不可少的社交方式,用户在互联网上的时间有相当大的一部分都用在了社交网络上。
当前国外最着名的社交网站是Facebook和Twitter,国内的代表则是微信/QQ和微博。这些社交网站可以分为两类:
需要指出的是,任何一个社交网站都不是单纯的社交图谱或兴趣图谱。如QQ上有些兴趣爱好群可以认识不同的陌生人,而微博中的好友也可以是现实中认识的。
社交网络定义了用户之间的联系,因此可以用图定义社交网络。我们用图 G(V,E,w) 定义一个社交网络,其中V是顶点集合,每个顶点代表一个用户,E是边集合,如果用户va和vb有社交网络关系,那么就有一条边 e(v a , v b ) 连接这两个用户,而 w(v a , v b )定义了边的权重。一般来说,有三种不同的社交网络数据:
和一般购物网站中的用户活跃度分布和物品流行度分布类似,社交网络中用户的入度(in degree,表示有多少人关注)和出度(out degree,表示关注多少人)的分布也是满足长尾分布的。即大部分人关注的人都很少,被关注很多的人也很少。
给定一个社交网络和一份用户行为数据集。其中社交网络定义了用户之间的好友关系,而用户行为数据集定义了不同用户的历史行为和兴趣数据。那么最简单的算法就是给用户推荐好友喜欢的物品集合。即用户u对物品i的兴趣 p ui 可以通过如下公式计算。
用户u和用户v的熟悉程度描述了用户u和用户在现实社会中的熟悉程度。一般来说,用户更加相信自己熟悉的好友的推荐,因此我们需要考虑用户之间的熟悉度。下面介绍3中衡量用户熟悉程度的方法。
(1)对于用户u和用户v,可以使用共同好友比例来计算他们的相似度:
上式中 out(u) 可以理解为用户u关注的用户合集,因此 out(u) ∩ out(v) 定义了用户u、v共同关注的用户集合。
(2)使用被关注的用户数量来计算用户之间的相似度,只要将公式中的 out(u) 修改为 in(u):
in(u) 是指关注用户u的集合。在无向社交网络中,in(u)和out(u)是相同的,而在微博这种有向社交网络中,这两个集合的含义就不痛了。一般来说,本方法适合用来计算微博大V之间的相似度,因为大v往往被关注的人数比较多;而方法(1)适用于计算普通用户之间的相似度,因为普通用户往往关注行为比较丰富。
(3)除此之外,还可以定义第三种有向的相似度:这个相似度的含义是用户u关注的用户中,有多大比例也关注了用户v:
这个相似度有一个缺点,就是在该相似度下所有人都和大v有很大的相似度,这是因为公式中的分母并没有考虑 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,来降低大v与其他用户的相似度:
上面介绍了3种计算用户之间相似度(或称熟悉度)的计算方法。除了熟悉程度,还需要考虑用户之间的兴趣相似度。我们和父母很熟悉,但很多时候我们和父母的兴趣确不相似,因此也不会喜欢他们喜欢的物品。因此,在度量用户相似度时,还需要考虑兴趣相似度,而兴趣相似度可以通过和UserCF类似的方法度量,即如果两个用户喜欢的物品集合重合度很高,两个用户的兴趣相似度很高。
最后,我们可以通过加权的形式将两种权重合并起来,便得到了各个好有用户的权重了。
有了权重,我们便可以针对用户u挑选k个最相似的用户,把他们购买过的物品中,u未购买过的物品推荐给用户u即可。打分公式如下:
其中 w' 是合并后的权重,score是用户v对物品的打分。
node2vec的整体思路分为两个步骤:第一个步骤是随机游走(random walk),即通过一定规则随机抽取一些点的序列;第二个步骤是将点的序列输入至word2vec模型从而得到每个点的embedding向量。
随机游走在前面基于图的模型中已经介绍过,其主要分为两步:(1)选择起始节点;(2)选择下一节点。起始节点选择有两种方法:按一定规则抽取一定量的节点或者以图中所有节点作为起始节点。一般来说会选择后一种方法以保证所有节点都会被选取到。
在选择下一节点方法上,最简单的是按边的权重来选择,但在实际应用中需要通过广度优先还是深度优先的方法来控制游走范围。一般来说,深度优先发现能力更强,广度优先更能使社区内(较相似)的节点出现在一个路径里。
斯坦福大学Jure Leskovec教授给出了一种可以控制广度优先或者深度优先的方法。
以上图为例,假设第一步是从t随机游走到v,这时候我们要确定下一步的邻接节点。本例中,作者定义了p和q两个参数变量来调节游走,首先计算其邻居节点与上一节点t的距离d,根据下面的公式得到α:
一般从每个节点开始游走5~10次,步长则根据点的数量N游走根号N步。如此便可通过random walk生成点的序列样本。
得到序列之后,便可以通过word2vec的方式训练得到各个用户的特征向量,通过余弦相似度便可以计算各个用户的相似度了。有了相似度,便可以使用基于用户的推荐算法了。
推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。
冷启动问题主要分为三类:
针对用户冷启动,下面给出一些简要的方案:
(1)有效利用账户信息。利用用户注册时提供的年龄、性别等数据做粗粒度的个性化;
(2)利用用户的社交网络账号登录(需要用户授权),导入用户在社交网站上的好友信息,然后给用户推荐其好友喜欢的物品;
(3)要求用户在登录时对一些物品进行反馈,手机用户对这些物品的兴趣信息,然后给用推荐那些和这些物品相似的物品;
(4)提供非个性化推荐。非个性化推荐的最简单例子就是热门排行榜,我们可以给用户推荐热门排行榜,然后等到用户数据收集到一定的时候,在切换为个性化推荐。
对于物品冷启动,可以利用新加入物品的内容信息,将它们推荐给喜欢过和他们相似的物品的用户。
对于系统冷启动,可以引入专家知识,通过一定高效的方式快速建立起物品的相关度表。
在上面介绍了一些推荐系统的基础算法知识,这些算法大都是比较经典且现在还在使用的。但是需要注意的是,在实践中,任何一种推荐算法都不是单独使用的,而是将多种推荐算法结合起来,也就是混合推荐系统,但是在这里并不准备介绍,感兴趣的可以查阅《推荐系统》或《推荐系统与深度学习》等书籍。此外,在推荐中非常重要的点击率模型以及基于矩阵的一些排序算法在这里并没有提及,感兴趣的也可自行学习。
虽然现在用的很多算法都是基于深度学习的,但是这些经典算法能够让我们对推荐系统的发展有一个比较好的理解,同时,更重要的一点——“推陈出新”,只有掌握了这些经典的算法,才能提出或理解现在的一些更好地算法。
‘贰’ 关于算法
阿朱对于算法的了解不多,总结如下,希望多多交流,改正瑕疵。
算法推荐主要有5种方式:
基于内容推荐:这是基于用户个人兴趣的推荐。根据用户个体的历史行为,计算对内容特征的偏好程度,进而推荐出与用户特征偏好匹配的内容。
协同过滤算法:这是基于群体的推荐。基于用户的相似度、内容的共现度,以及基于人口特征将用户聚集为不同群体来推荐。(解释一下:常见的协同过滤算法有两种,一种是基于用户的(user-based),也即计算用户之间的相似性,如果A和B的兴趣相近,那么A喜欢的电影,B也很有可能喜欢。另一种是基于物品的(item-based),也即计算物品之间的相似性,如果电影C和电影D很相似,那么喜欢电影C的人,可能也会喜欢电影D。)
扩展推荐:基于用户兴趣点、内容类别等扩展。(你喜欢历史资讯,我推考古、寻宝的资讯给你)
新热推荐:基于全局内容的时效性、热度推荐。(在产品初期同时缺乏用户数据和内容数据时,内容分发效率很低。使用基于内容推荐算法效果不显着,而使用一些热点话题可在保证一定流量的同时,不断通过用户的个人行为(点赞、评论、浏览、收藏)来逐步精确用户画像和进行内容沉淀,为之后的个性化推荐做准备)。
环境特征:基于地域、时间、场景等推荐。(知乎上你们市的牙科诊所广告、婚庆广告)
每种算法的效果不一,组合味道更佳,因此很多公司都是采用“算法矩阵”的方式来推荐feed。(后文也会谈到这一点)
优势:
内容质量审核、社区治理(辱骂、撕逼),推荐商品,减少人工运营成本。
源源不断推荐给你感兴趣的feed,提升了用户粘性,商业化的潜力进一步加大。
让用户 kill time 的需求更好地被满足,增强用户体验
弊端:
1.算法本身或者算法背后的人产生技术错误——只要是人写的算法,就一定有出错的概率,比如德国居民凌晨发飙的智能音箱、失控的Uber自动驾驶汽车就是程序上的Bug导致的,这一类我们克服的办法其实相对简单。但对于另一种人为算计消费者的算法有时候可能我们就无能为力了,比如大数据杀熟现象,无论真实与否,这类问题往往很难识别,因此也加大了监管的难度;(抖音视频里你见不到“钱”字,只能看到“Q”来代替)
2.算法对于人性部分的忽略——现在的人工智能离真正理解人类的感情和行为依然有巨大的鸿沟,Facebook提醒你给去世的亲人发生日祝福背后本质的原因在于AI无法真正理解死亡对于人类意味着什么;因此需要人机结合(平台人工参与,用户举报等自治措施),不能单独依靠算法。
3.算法训练数据本身的偏见——目前人工智能的基本逻辑是先构建一个合适的机器学习模型,然后用大量的数据去训练模型,然后用训练好的模型再来预测新的数据,这里边有一个非常重要前提就是输入数据的重要性,比如变坏的微软机器人Tay之所以产生问题就是因为输入的数据中本身就存在偏见,如果现实世界数据本身就存在偏见,那么预测结果也一定会有偏见;
先下结论吧:算法不会导致“信息茧房”
“社交媒体和算法推荐导致信息茧房”这一判断成立的一个重要前提是:我们只会点击那些我们熟悉的、赞同的内容,不断让机器加深对我们的印象:原来他们只喜欢看这些!
但在现实中,这个前提是过于简化的,乃至是错误的。
在个体层面,我们有着多样的阅读动机,受到各种认知偏见的影响,可能倾向于点击某些特定类型的内容,但绝不仅仅局限于自己认同的那些。
在社交层面:我们在大多数APP上都存在着社交关系,以及主动选择关注的帐号,这些都对我们能接触到的内容产生重要影响。一个在APP上拥有一定社交关系的人,不太可能陷入狭窄的视野当中。
在技术层面:在算法的分类里说了,每种算法都有其利弊,因此很多公司都是采用“算法矩阵”的方式来推荐feed。但在普罗大众眼里,算法=基于内容的推荐算法,而忽略了“基于内容的推荐算法”只是算法种类里的一种,其他类型算法也会被产品使用。
在企业层面:没有一个商场的经理,希望顾客每一次来到商场都只关注同一类别的商品。用户兴趣窄化对于商业化目标并不是一个好的选择。
博弈:
推荐太强了,关注力量就会弱。抖音沉浸式交互和基于内容的算法推荐是 kill time 的利器,推荐feed刷的过瘾了,你还会去刷关注feed吗?
共生:
算法有弊端,关注可以弥补或有所增益。推荐feed是忽略了人"社交性“这个特点,以知乎为例,关注的内容生产者传递给我们价值,所以我们需要一个途径来知道那几十个或上百的关注对象的产出内容。朋友圈满足我们窥探的信息需求,也同理。(另外从结果反推过程,大家看一下手里的B站、知乎、抖音、快手就清楚了)
‘叁’ 3分钟轻松了解个性化推荐算法
推荐这种体验除了电商网站,还有新闻推荐、电台音乐推荐、搜索相关内容及广告推荐,基于数据的个性化推荐也越来越普遍了。今天就针对场景来说说这些不同的个性化推荐算法吧。
说个性化之前,先提一下非个性化。 非个性化的推荐也是很常见的,毕竟人嘛都有从众心理,总想知道大家都在看什么。非个性化推荐的方式主要就是以比较单一的维度加上半衰期去看全局排名,比如,30天内点击排名,一周热门排名。
但是只靠非个性化推荐有个弊端,就是马太效应,点的人越多的,经过推荐点得人有更多。。。强者越强,弱者机会越少就越弱,可能导致两级分化严重,一些比较优质素材就被埋没了。
所以,为了解决一部分马太效应的问题,也主要是顺应数据化和自动化的模式,就需要增加个性化的推荐(可算说到正题了。。。)个性化的优点是不仅体验好,而且也大大增加了效率,让你更快找到你感兴趣的东西。YouTube也曾做过实验测试个性化和非个性化的效果,最终结果显示个性化推荐的点击率是同期热门视频的两倍。
1.新闻、视频、资讯和电台(基于内容推荐)
一般来说,如果是推荐资讯类的都会采用基于内容的推荐,甚至早期的邮件过滤也采用这种方式。
基于内容的推荐方法就是根据用户过去的行为记录来向用户推荐相似额推荐品。简单来说就是你常常浏览科技新闻,那就更多的给你推荐科技类的新闻。
复杂来说,根据行为设计权重,根据不同维度属性区分推荐品都是麻烦的事,常用的判断用户可能会喜欢推荐品程度的余弦向量公式长这样,我就不解释了(已经勾起了我关于高数不好的回忆)。。。
但是,这种算法缺点是由于内容高度匹配,导致推荐结果的惊喜度较差,而且有冷启动的问题,对新用户不能提供可靠的推荐结果。并且,只有维度增加才能增加推荐的精度,但是维度一旦增加计算量也成指数型增长。如果是非实体的推荐品,定义风格也不是一件容易的事,同一个作者的文风和曲风也会发生改变。
2.电商零售类(协同过滤推荐和关联规则推荐)
说电商推荐那不可能不讲到亚马逊,传言亚马逊有三成的销售额都来自个性化的商品推荐系统。实际上,我自己也常常在这里找到喜欢的书,也愿意主动的去看他到底给我推荐了什么。
一般,电商主流推荐算法是基于一个这样的假设,“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”即协同过滤过滤算法。主要的任务就是找出和你品味最相近的用户,从而根据最近他的喜好预测你也可能喜欢什么。
这种方法可以推荐一些内容上差异较大但是又是用户感兴趣的物品,很好的支持用户发现潜在的兴趣偏好。也不需要领域知识,并且随着时间推移性能提高。但是也存在无法向新用户推荐的问题,系统刚刚开始时推荐质可能较量差。
电商行业也常常会使用到基于关联规则的推荐。即以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。比如,你购买了羽毛球拍,那我相应的会向你推荐羽毛球周边用品。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零售业中已经得到了成功的应用。
3.广告行业(基于知识推荐)
自从可以浏览器读取cookies,甚至获得年龄属性等信息,广告的个性化投放就也可以根据不同场景使用了。
当用户的行为数据较少时,基于知识的推荐可以帮助我们解决这类问题。用户必须指定需求,然后系统设法给出解决方式。假设,你的广告需要指定某地区某年龄段的投放,系统就根据这条规则进行计算。基于知识的推荐在某种程度是可以看成是一种推理技术。这种方法不需要用户行为数据就能推荐,所以不存在冷启动问题。推荐结果主要依赖两种形式,基于约束推荐和基于实例推荐。
4.组合推荐
由于各种推荐方法都有优缺点,所以在实际中,并不像上文讲的那样采用单一的方法进行建模和推荐(我真的只是为了解释清楚算法)。。。
在组合方式上,也有多种思路:加权、变换、混合、特征组合、层叠、特征扩充、元级别。 并且,为了解决冷启动的问题,还会相应的增加补足策略,比如根据用户模型的数据,结合挖掘的各种榜单进行补足,如全局热门、分类热门等。 还有一些开放性的问题,比如,需不需要帮助用户有品味的提升,引导人去更好的生活。
最后,我总想,最好的推荐效果是像一个了解你的朋友一样跟你推荐,因为他知道你喜欢什么,最近对什么感兴趣,也总能发现一些有趣的新东西。这让我想到有一些朋友总会兴致勃勃的过来说,嘿,给你推荐个东西,你肯定喜欢,光是听到这句话我好像就开心起来,也许这就是我喜欢这个功能的原因。
‘肆’ 各类场景应用中涉及的AI算法汇总
整理了各类场景应用中AI算法
一、图像CV
内容安全,目标检测,图像识别,智能视觉生产,图像搜索,图像分割,物体检测,图像分类,图像标签,名人识别,概念识别,场景识别,物体识别,场景分析,智能相册,内容推荐,图库管理,网红人物识别,明星人物识别,图像搜索,商品图片搜索,版权图片搜索,通用图片搜索,车牌识别,垃圾分类,车辆检测,菜品识别,车型识别,犬类识别,实例分割,风格迁移,智能填充,智能识图,拍照搜商品,精准广告投放,电商导购,图像分析,图像理解,图像处理,图像质量评估,场景识别,物体识别,场所识别,图像自训练平台,图像分类,目标检测,图像分割,关键点检测,图像生成,场景文字识别,度量学习,图像识别,图像比对,图像分类使用手册,图像分类API文档目标检测使用手册,目标检测API文档Logo检测使用手册,Logo检测API文档,通用图片搜索,车牌识别,垃圾分类,车辆检测,车型识别,犬类识别,实例分割,风格迁移,智能填充,车牌识别,相册聚类,场景与物体识别,无限天空,图像识别引擎,黄色图片识别,暴力图像识别,工业轮胎智能检测,肋骨骨折识别,显微识别,图像处理,广告识别,人脸算法,人体算法,图像识别,图像增强,OCR,图像处理,ZoomAI,智能贴图,智能制作,质量评价,图像识别,智能鉴黄,图像识别,实时手写识别,唇语识别,通用文字识别,手写文字识别,图像技术,图像识别,图像审核,图像搜索,图像增强,图像特效,车辆分析,图像生成,绘画机器人独家,动漫化身独家,像素风独家,超清人像独家,图像融合,换脸技术,神奇变脸,图像风格化,证件照生成,线稿图像识别,宝宝检测,图像分类,圉像深度估计,天空分割,食物分割,猫狗脸技术,食物识别独家,图像美学评分,车辆分析,车型识别,车型识别(含指导价),车型识别(含配置参数),车标识别,人脸识别(活体),车牌识别,表情识别,安全帽识别,计算机影像,计算机视觉,聚焦光学字符识别、人脸识别、质检、感知、理解、交互,图像视频分析,Logo检测,内容审核,智能批改,笔记评估,思维导图评估,物体检测,物体识别。
二、人脸、体态、眼瞳、声音、指纹
人脸分割人脸识别,无,人体分析HAS,识别人的年龄,性别,穿着信息,客流统计分析,智能客服,热点区域分析,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,换脸甄别,人脸支付,人脸核身,人像变换,人脸试妆,人脸融合,人体分析,手势识别,人脸验证与检索,人脸比对,人脸比对sensetime,人脸水印照比对,静默活体检测,静默活体检测sensetime,人脸检测和属性分析,人脸特征分析tuputech,配合式活体检测,人脸安防,计算机视觉,智能应用服务,人脸查询人脸分析人脸统计名单库管理人脸布控,人脸应用,人体应用,人体查询,车辆查询车辆分析车辆统计车辆布控车辆名单库管理,车辆应用,人脸图像识别人体图像识别车辆图像识别,图像识别,图像比对,人脸比对,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,人脸检测,人脸比对,人脸搜索,人脸关键点,稠密关键点,人脸属性,情绪识别,颜值评分,视线估计,皮肤分析,3D人脸重建,面部特征分析人体识别,人体检测,人体关键点,人体抠像,人体属性,手势识别人像处理,美颜美型,人脸融合,滤镜,声纹识别支付,语音合成,语音合成,声纹识别,语音唤醒,人脸识别引擎,摄像头人脸识别,图片人脸检测,身份识别,人脸识别,人脸属性,人体识别,声纹识别,衣服检索及聚类,语音分析,声纹识别,说话人归档,人脸和人体识别,人脸检测,手势识别,人脸与人体识别,人脸识别云服务,人脸识别私有化,人脸离线识别SDK,人脸实名认证,人像特效,人体分析,人脸技不,皮肤分析独家,头部分割,宏观人脸分析,人脸关键点检测,微观人脸分析独家,头发分析独家,五官分割,头发分割人体技术,人体外轮廓点检测独家,精细化人像抠图,人体框检测,肢体关键点检测,人像分割,服饰识别,手势识别,皮肤分割,人脸,说话人识别,人脸检测识别,人脸1:1比对,人脸检测,AI人脸/人形车辆,大数据人像图片防伪,QoS保障,CDN,表情识别,举手动作识别,人脸检测,网络切片,边缘计算,人脸分析,人脸检测,人脸搜索,人体分析,手势识别,着装检测,人脸识别,行为检测,人脸识别,人形检测,行为分析,人脸检测,人脸跟踪,人脸比对,人脸查找,人脸属性分析,活体检测,声音指纹,声纹识别。
三、视频
视频分割、视频处理、视频理解、智能视觉、多媒体,视频内容分析,人体动作监控,视频分类,智能交通,人/动物轨迹分析,目标计数,目标跟踪,视频编辑-,精彩片段提取,新闻视频拆分,视频摘要,视频封面,视频拆条,视频标签-,视频推荐,视频搜索,视频指纹-,数字版权管理,广告识别,视频快速审核,视频版权,视频查重,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,无,无,视频,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,菜品识别,视频识别引擎,结肠息肉检测,胃镜评估系统,视频标签,场景识别,客流分析,手势识别,视频技术,短视频标签,视觉看点识别,动态封面图自动生成,智能剪辑,新闻拆条,智能插帧,视频技术,多模态媒资检索公测中,媒体内容分析,媒体内容审核,视频生成,视频动作识别,
四、ocr文字识别
手写识别,票据识别,通用文档,通用卡证,保险智能理赔,财税报销电子化,证照电子化审批,票据类文字识别,行业类文字识别,证件类文字识别,通用类文字识别,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,增值税发票核验,营业执照核验,智能扫码,行业文档识别, 汽车 相关识别,票据单据识别,卡证文字识别,通用文字识别,手写文字识别,印刷文字识别,银行卡识别,名片识别,身份证识别intsig,营业执照识别intsig,增值税发票识别intsig,拍照速算识别,公式识别,指尖文字识别,驾驶证识别JD,行驶证识别JD,车牌识别JD,身份证识别,增值税发票识别,营业执照识别,火车票识别,出租车发票识别,印刷文字识别(多语种),印刷文字识别(多语种)intsig内容审核,色情内容过滤,政治人物检查,暴恐敏感信息过滤,广告过滤,OCR自定义模板使用手册,OCR自定义模板API文档,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,身份证识别,驾驶证识别,行驶证识别,银行卡识别,通用文字识别,自定义模板文字识别,文字识别引擎,身份证识别,图片文字识别,通用文字识别,身份证识别,名片识别,光学字符识别服务,通用文字识别,手写体文字识别,表格识别,整题识别(含公式),购物小票识别,身份证识别,名片识别,自定义模板文字识别,文字识别,通用文字识别,银行卡识别,身份证识别,字幕识别,网络图片识别, 游戏 直播关键字识别,新闻标题识别,OCR文字识别,通用场景文字识别,卡证文字识别,财务票据文字识别,医疗票据文字识别, 汽车 场景文字识别,教育场景文字识别,其他场景文字识别,iOCR自定义模板文字识别,通用类OCR,通用文本识别(中英)通用文本识别(多语言)通用表格识别,证照类OCR,身份证社保卡户口本护照名片银行卡结婚证离婚证房产证不动产证,车辆相关OCR,行驶证驾驶证车辆合格证车辆登记证,公司商铺类OCR,商户小票税务登记证开户许可证营业执照组织机构代码证,票据类OCR,增值税发票增值税卷票火车票飞机行程单出租车发票购车发票智能技术,票据机器人证照机器人文本配置机器人表格配置机器人框选配置机器人,文字识别,行驶证识别,驾驶证识别,表单识别器,通用文本,财务票据识别,机构文档识别,个人证件识别,车辆相关识别,通用表格,印章识别,财报识别,合同比对,识别文字识别,签名比对,OCR识别,教育OCR,印刷识别,手写识别,表格识别,公式识别,试卷拆录
五、自然语言NPL
文本相似度,文本摘要,文本纠错,中心词提取,文本信息抽取,智能文本分类,命名实体,词性标注,多语言分词,NLP基础服务,地址标准化,商品评价解析智能短信解析,机器阅读理解,金融研报信息识别,法律案件抽取,行业问答推理,行业知识图谱构建,文本实体关系抽取,搜索推荐,知识问答,短文本相似度,文本实体抽取, 情感 倾向分析,兴趣画像匹配,文本分类-多标签,文本分类-单标签,定制自然语言处理,语言生成,语言理解,自然语言处理基础,文本摘要,数据转文字,文本生成,智能问答系统,内容推荐,评价分析,文本分类,对话理解,意图理解, 情感 分析,观点抽取,中文分词,短文本相似度,关键词提取,词向量,命名实体,识别依存,句法分析, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取,词法分析, 情感 分析,关键词提取,用户评论分析,资讯热点挖掘,AIUI人机交互,文本纠错,词法分析,依存句法分析,语义角色标注,语义依存分析(依存树),语义依存分析(依存图), 情感 分析,关键词提取,NLP能力生产平台,NLP基础技术,中文词法分析-LAC,词向量—Word2vec,语言模型—Language_model,NLP核心技术, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,信息检索、新闻推荐、智能客服, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,机器问答、自然语言推断、 情感 分析和文档排序,NLP系统应用,问答系统对话系统智能客服,用户消费习惯理解热点话题分析舆情监控,自然语言处理,文本分类使用手册,文本分类API文档, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取智能创作,智能写作,搭配短文,种草标题,卖点标题,社交电商营销文案,自然语言处理能力,基础文本分析,分词、词性分析技术,词向量表示,依存句法分析,DNN语言模型,语义解析技术,意图成分识别, 情感 分析,对话情绪识别,文本相似度检测,文本解析和抽取技术,智能信息抽取,阅读理解,智能标签,NLG,自动摘要,自动写文章,语言处理基础技术,文本审核, 情感 分析,机器翻译,智能聊天,自然语言,基于标题的视频标签,台词看点识别,意图识别,词法分析,相关词,舆情分析,流量预测,标签技术,自然语言处理,语义对话,自然语言处理,车型信息提取,关键词提取,语义理解,语义相似度,意图解析,中文词向量,表示依存,句法分析,上下文理解,词法分析,意图分析,情绪计算,视觉 情感 ,语音 情感 , 情感 分析,沉浸式阅读器,语言理解,文本分析,自然语言处理,在线语音识别,自然语言理解火速上线中, 情感 判别,语义角色标注,依存句法分析,词性标注,实体识别,中文分词,分词,
6、知识图谱
知识图谱,药学知识图谱,智能分诊,腾讯知识图谱,无,药学知识图谱,智能分诊,知识理解,知识图谱Schema,图数据库BGraph,知识图谱,语言与知识,语言处理基础技术,语言处理应用技术,知识理解,文本审核,智能对话定制平台,智能文档分析平台,智能创作平台,知识图谱,实体链接,意图图谱,识别实体,逻辑推理,知识挖掘,知识卡片
7、对话问答机器人
智能问答机器人,智能语音助手,智能对话质检,智能话务机器人,无,电话机器人,NeuHub助力京东智能客服升级,腾讯云小微,智能硬件AI语音助手,对话机器人,无,问答系统对话系统智能客服,Replika对话技术,客服机器人,智能问答,智能场景,个性化回复,多轮交互,情绪识别,智能客服,金融虚拟客服,电话质检,AI语音交互机器人,中移云客服·智能AI外呼,人机对话精准语义分析
8、翻译
协同翻译工具平台,电商内容多语言工具,文档翻译,专业版翻译引擎,通用版翻译引擎,无,机器翻译,无,机器翻译,音视频字幕平台,机器翻译,机器翻译niutrans,文本翻译,语音翻译,拍照翻译,机器翻译,机器翻译,文本翻译,语音翻译,通用翻译,自然语言翻译服务,文本翻译,图片翻译,语音翻译,实时语音翻译,文档翻译(开发版,机器翻译,文本翻译,语音翻译,拍照翻译,机器翻译实时长语音转写,录音文件长语音转写,翻译工具,机器翻译火速上线中
9、声音
便携智能语音一体机,语音合成声音定制,语音合成,一句话识别,实时语音识别录音文件识别,客服电话,语音录入,语音指令,语音对话,语音识别,科学研究,安防监控,声音分类,语音合成,语音识别,实时语音转写,定制语音合成,定制语音识别,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,语音识别,语音合成,声纹识别,语音识别,语音听写,语音转写,实时语音转写,语音唤醒,离线命令词识别,离线语音听写,语音合成,在线语音合成,离线语音合成,语音分析,语音评测,性别年龄识别,声纹识别,歌曲识别,A.I.客服平台能力中间件,语音识别,语音交互技术,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,远场语音识别,语音识别,一句话识别,实时语音识别,录音文件识别,语音合成,实时语音识别,长语音识别,语音识别,语音合成,波束形成,声源定位,去混响,降噪,回声消除,分布式拾音,语音识别,语音唤醒,语音合成,声纹识别,智能语音服务,语音合成,短语音识别,实时语音识别,语音理解与交互,离线唤醒词识别,语音识别,一句话识别,实时语音识别,录音文件识别,电话语音识别,语音唤醒,离线语音识别,离线命令词识别,远场语音识别,语音合成,通用语音合成,个性化语音合成,语音技术,短语音识别,实时语音识别,音频文件转写,在线语音合成,离线语音合成,语音自训练平台,语音交互,语音合成,语音识别,一句话识别,实时短语音识别,语音合成,语音唤醒,本地语音合成,语音翻译,语音转文本,短语音听写,长语音转写,实时语音转写,语音内容审核,会议超极本,语音交互技术,语音识别,语义理解,语音合成,音频转写,音视频类产品,语音通知/验证码,订单小号,拨打验证,点击拨号,数据语音,统一认证,语音会议,企业视频彩铃,语音识别,语音文件转录,实时语音识别,一句话语音识别,语音合成,通用语音合成,个性化语音合成,语音评测,通用语音评测,中英文造句评测,在线语音识别,语音识别,语音唤醒,语音合成,语音合成,语音识别,语音听写,语音转写,短语音转写(同步),语音识别,语音 情感 识别
十、数据挖掘AI硬件
算法类型:包括二分类、多分类和回归,精准营销,表格数据预测,销量预测,交通流量预测,时序预测,大数据,无,机器学习使用手册,机器学习API文档,大数据处理,大数据传输,数据工厂,大数据分析,数据仓库,数据采集与标注,数据采集服务,数据标注服务,AI开发平台,全功能AI开发平台BML,零门槛AI开发平台EasyDL,AI硬件与平台,GPU云服务器,机器人平台,度目视频分析盒子,度目AI镜头模组,度目人脸应用套件,度目人脸抓拍机,人脸识别摄像机,昆仑AI加速卡,智能预测,购车指数,数据科学虚拟机,平台效率,云与AI,抗DDoS,天盾,网站漏洞扫描,网页防篡改,入侵检测防护,弹性云服务器,对象存储服务,云专线(CDA,AI计算机平台—360net深度学习基础模型,AI算法训练适配主流AI框架
十一、其他
内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测,商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,强化学习,智能地图引擎,内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,个性化与推荐系统,推荐系统,舆情分析,舆情标签,智慧教育,智能语音评测,拍照搜题,题目识别切分,整页拍搜批改,作文批改,学业大数据平台,文档校审系统,会议同传系统,文档翻译系统,视频翻译系统,教育学习,口语评测,朗读听书,增强现实,3D肢体关键点SDK,美颜滤镜SDK,短视频SDK,基础服务,私有云部署,多模态交互,多模态 情感 分析,多模态意图解析,多模态融合,多模态语义,内容审查器,Microsoft基因组学,医学人工智能开放平台,数据查验接口,身份验证(公安简项),银行卡验证,发票查验,设备接入服务Web/H5直播消息设备托管异常巡检电话提醒,音视频,视频监控服务云广播服务云存储云录制,司乘体验,智能地图引擎,消息类产品,视频短信,短信通知/验证码,企业挂机彩信,来去电身份提示,企业固话彩印,模板闪信,异网短信,内容生产,试卷拆录解决方案,教学管理,教学质量评估解决方案,教学异常行为监测,授课质量分析解决方案,路况识别,人车检测,视觉SLAM,高精地图,免费SDK,智能诊后随访管理,用药管家,智能预问诊,智能导诊,智能自诊,智能问药,智能问答,裁判文书近义词计算,法条推荐,案由预测,