左转算法例题
可以给每一个小方块设置为一个坐标,变为一个三阶行列式,3*3矩阵,转变为二元数组旋转。观察一下左旋:
11 12 13 31 21 11
21 22 23 →→ 32 22 12
31 32 33 33 23 13
坐标变换如下:(1,1)变为(1,3),(1,2)变为(2,3),(1,3)变为(3,3)
(2,1)变为(1,2),(2,2)变为(2,2),(2,3)变为(3,2)
(3,1)变为(1,1),(3,2)变为(2,1),(3,3)变为(3,1)
规律就是(i,j)变为(j,3-i+1):
如果是2*2的方格,就可以变为二阶行列式,也就是2*2的二元数组,这里给出3*3九宫格改变的示意,我的代码如下:
importjava.util.Random;
publicclassT{
publicstaticvoidmain(String[]args){
int[][]a=newint[3][3];
System.out.println("");
Randomr=newRandom();
for(inti=0;i<3;i++){
for(intj=0;j<3;j++){
a[i][j]=r.nextInt(10);
}
}
System.out.println("thearrayisshownasfollows:");
for(inti=0;i<3;i++){
for(intj=0;j<3;j++){
System.out.print(a[i][j]+"");
}
System.out.println();
}
System.out.println("左转九十度");
for(inti=0;i<a.length;i++){
for(intj=0;j<a[i].length;j++){
System.out.print(a[a[i].length-1-j][i]+"");
}
System.out.println();
}
}
}
❷ 什么是启发式算法(转)
启发式方法(试探法)是一种帮你寻求答案的技术,但它给出的答案是具有偶然性的(subjecttochance),因为启发式方法仅仅告诉你该如何去找,而没有告诉你要找什么。它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30
天无效退款的保证。
驾驶汽车到达某人的家,写成算法是这样的:沿167
号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5
英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。
用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。
从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。
❸ m个数,得到各种组合,每种组合数大于1,有什么好算法。
向左转|向右转
其中:m≥n
组合的公式,即在m个数中选出n个数进行组合,组合不分前后顺序,而排列就不同,用A表示。
题目说:每种组合数大于1
则,n>1
公式中:!(感叹号)表示阶乘
【举例:5!=5*4*3*2*1】