分水岭分割算法
A. 分水岭算法的应用
数学形态学一个应用是分水岭算法,为了便于理解,可以将图像的灰度空间与地球表面的地形高度相类比,据此,发明了应用于图像领域的分水岭算法。
假设,如下图所示的一个岛屿,要从 点走到 点,虚线所表示的是最短的直线距离,也就是欧式距离,考虑到现实情况,不能穿过水面到达目标地点,所以,能够从起点到终点的实际通行路线中最短的距离成为测地线距离。
通过以上分析,给出测地线距离的定义:
给定指定连通域 ,测地线距离就是 中两个像素点 和 之间的最短(可执行)路径的长度,用公式定义如下:
如下图所示,假定一个连通域 包含了若干个子区域 ,用公式表示 所表示的测地线影响域为:
以上公式可以理解为,区域 中的像素点到 域的测地线距离比其他域更小的点的轨迹的集合,也就是以 域中的种子点出发,其测地线距离比其他域的种子点都要小的点集所构成的区域。如下图所示:
SKIZ表示区域 中的点不属于任何一个测地线影响域,也就是域 中的点到两个测地线影响域的中测地线距离相等。区域 中构成 的SKIZ,记作 ,用公式的表述如下:
注意:, 表示区域 以外的 中的所有点的集合集合
如下图所示的山脉地形图,包含山谷和山峰,在水平面不断上升的过程中,会逐渐淹没掉一些较低的区域,而为了防止水溢出,需要不断在山脊上修建大坝,这个过程不断进行,最后会得到一个区域分割的效果。
在一副图像上实现分水岭算法,与上述过程相似,只不过是通过灰度值充当水平面的角色,对图像进行不断的填埋,最后得到区域分割的效果图。
如上图所示的动画中,不断用灰度值代表的水平面淹没图像中的最小值,最后得到分割后的图像。综上,分水岭算法的步骤可以总结如下:
如下图所示,另外一种分水岭算法的原理是,指定初始的种子点,只对种子点所在的邻域像素进行分类,而不考虑其他区域。
如下图所示的图片,以最小点开始,进行分水岭算法,会将整幅图分割成许多小区域,造成过分割的效果。为了解决这一问题,有以下三种解决方案:
最后,通过合并一些小区域再利用分水岭算法进行分割的效果如下图所示:
如下图所示,展示了通过分水岭算法分割血细胞的流程:
B. 分水岭的计算过程
分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即
g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始图像,grad{.}表示梯度运算。
分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即
g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示阈值。
程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。
C. 分水岭算法的介绍
所谓分水岭算法有好多种实现算法,拓扑学,形态学,浸水模拟和降水模拟等方式。要搞懂就不容易了。Watershed Algorithm(分水岭算法),顾名思义,就是根据分水岭的构成来考虑图像的分割。现实中我们可以或者说可以想象有山有湖的景象,那么那一定是水绕 山,山围水的情形。当然在需要的时候,要人工构筑分水岭,以防集水盆之间的互相穿透。而区分高山(plateaus)与水的界线,以及湖与湖之间的间隔或 都是连通的关系,就是我们可爱的分水岭(watershed)。为了得到一个相对集中的集水盆,那么让水涨到都接近周围的最高的山顶就可以了,再涨就要漏 水到邻居了,而邻居,嘿嘿,水质不同诶,会混淆自我的。那么这样的话,我们就可以用来获取边界灰阶大,中间灰阶小的物体区域了,它就是集水盆。
D. 分水岭算法的产生与发展过程
分水岭的计算过程是一个迭代标注过程.分水岭比较经典的计算方法是L.Vincent为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识
E. 图像分割最好方法
1.基于阈值的分割方法
阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。
阈值法特别适用于目标和背景占据不同灰度级范围的图。图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。
2.基于区域的图像分割方法
基于区域的分割方法是以直接寻找区域为基础的分割技术,基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。
分水岭算法
分水岭算法是一个非常好理解的算法,它根据分水岭的构成来考虑图像的分割,现实中我们可以想象成有山和湖的景象,那么一定是水绕山山围水的景象。
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。