当前位置:首页 » 操作系统 » 拆分算法库

拆分算法库

发布时间: 2023-03-18 03:15:48

⑴ 自然数拆分算法,pascal高手请进

完整程序如下,上机调试通过,保证运行正确,每个空的位置在程序中用{(1)}~{(5)}标明,相应位置的语句就是罩坦你的答案:
{$apptype console}
program ex4;
const m=100;
var
s:array[1..m] of 0..m;
n,I,j,sum,count: integer;
procere print ;
var
k :integer;
begin
count:=count+1;
write(count,':',n,'=',s[1]);
for k:=2 to I do write('+',s[k]);
writeln;
end;

begin
write('Input n:');readln(n);
i:=1;{(1)}sum:=0;j:=0;count:=0;
writeln('output data:');
repeat
j:=j+1;
sum:=sum+j; {(2)}
if sum<=n{(3)} then begin
s[I]:=j;
if sum =n then begin
print;
sum:=sum-s[I];
i:=I-1;
sum:=sum-s[i]; {(4)}
j:=s[I]
end
else begin
i:=I+1;
j:=j-1; {(5)}
end
end
else begin
sum:=sum-j;
i:=I-1;
sum:=sum-s[I];
j:=s[i];
end
until I=0;
end.

我为什么要粘贴完整程序,因为你打字有错误,每个空是否包含分号的问题可能导致答案与标准答案不完全一致,我下面把5个空白的内容整理如下,都不包含语句的分号:
(1)i:=1
(2)sum:=sum+j
(3)sum<=n
(4)sum:=sum-s[i]
(5)j:=j-1

通过高级程序员考试快10年了,现在做这类物禅桐题目已经没有当初的袭侍熟练了,不得不服老呀。

⑵ 离婚房产分割计算方法一览表

婚房产分割计算方法有两种计算方式:
1、由分得房产一方负责偿还剩余银行贷款及利息,并给付另一方的补偿房款,计算公式为:(房屋行圆增值 已支付房款)×50%。
2、由分得房产一方负责偿还剩余银行贷款及利息,并给付另一方的补偿房款,计算公式为:(房屋现值-尚欠银行按揭贷款)×50%,房屋现值可由评估机构评估,也可由夫妻双方同意确认。
1、对于一方婚前以全款购买,婚后取得房产证的房屋,属于一方的婚前个人财产,离婚时,该房屋不参与分割。
2、一方婚前以个人财产出首付,婚后双方共同还贷的房屋,离婚时仍属于一方的婚前财产,但产权人应当就婚内共同还贷及对应的增值部分,给予另一方补偿。
3、对于一方婚后,以个人婚前财产出全资购买的房屋,在离婚时,应当析出个人婚前财产部分,对于房屋的增值部分作为夫妻共同财产均等分割。
4、婚后一方以个人财产和夫妻共同财产混合出资的,该房屋属于夫妻共同财产,在析出个人婚前财产部分后由夫妻双方均等分割。
离婚时的资产算法:
个人资产不予分割,当事人另有约定的除外。共同资产由双方协议处理。如果协议不成的,由人民法院根据财产的具体情况,按照照顾子女、女方和无过错方权益的原则判决。债务的算法:个人债务由债务人自行承担,双方另有约定的除外。夫妻共同债务应当共同清偿。

法律依据:
《最高人民法院关于适用〈中华人民共和国民法典〉婚姻家庭编的解释(一)》
第七十六条 双方对夫妻共同财产中的房屋价值及归属无法达成协议时,人民法院按以下情形分别处理:
(一)双方均主张房屋所有权并且同意竞价取得的,应当准许;
(二)一方主张房屋所有权的,由评估机构按市场价格对房屋作出评估,取得房屋所有权的一方应当给予另一方相应的补偿;
(三)双方均不主张房屋所有权的,根据当事人的申请拍卖、变卖房屋,就厅闭所得价款进扮带裂行分割。
第七十七条 离婚时双方对尚未取得所有权或者尚未取得完全所有权的房屋有争议且协商不成的,人民法院不宜判决房屋所有权的归属,应当根据实际情况判决由当事人使用。
当事人就前款规定的房屋取得完全所有权后,有争议的,可以另行向人民法院提起诉讼。

⑶ 图像分割算法总结

       图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。

        接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。

        图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。

        1.基于边缘的图像分割算法:

            有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。

            这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。

             也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下:

可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。

        2.基于区域分割的算法:

            区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。

            基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。

            其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).

            基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:

                unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。

                在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                

        3.基于图的分割算法

            基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。

论文原地址参考: https://arxiv.org/pdf/1707.00243.pdf

整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。

由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

java实现整数拆分算法,例如输入一个4会输出4 , 3 1, 2 2, 2 1

importjava.util.Scanner;//输入的

publicclassABS{//外面建的点java的文件名必须和这个一样


publicstaticinta[]=newint[12000];

staticvoidp(intn,intindex)//搜索
{

inti;
if(n<=0)//当n为0的时候输出这种情况
{
System.out.print(a[0]);
for(i=1;i<index;System.out.print("+"+a[i++]));
System.out.print(" ");
return;//返回到函数调用的地方
手简亩}
for(i=index>咐橘0&&(n>=a[index-1])?a[index-1]:n;i>0;i--)
{//如果数组下标大于0且n剩余的值大于等于上一个的值,那么i就等于上一个的值,否则i就等于n
a[index]=i;
p(n-i,index+1);//在次调用
}
}

publicstaticvoidmain(String[]args){

Scannerin=newScanner(System.in);//从控制台中读取输入数据
intt;
t=in.nextInt();//输入一个整数
if(t>=10000)
{
System.out.println("你输入的数据超过1万,太大咯!!!");
return;
}
p(t,0);
in.close();//关闭输入
return;
}
}

这个只是毕森可以实现10000 以内的数, 如果想大一点 就把数组开大一点局可以了!

⑸ 39乘81多种算法拆分法

39*嫌友81
=(山者芦逗带40-1)*81
=3240-81
=3159
39*81
=39*(80+1)
=3120+39
=3159

⑹ java实现 整数拆分 希望有个算法

我给你写一个,要给分的呦。代码如下:

import java.util.ArrayList;
import java.util.List;

public class Testxxx {
public void chaifen(int n){
List list = new ArrayList();
chaifendigui(n,list);
}
public void chaifendigui(int n, List list) {
// TODO Auto-generated method stub

for (int i = 1; i <= n; i++) {

System.out.print(i+" ");
if(n>i){
List list2 = new ArrayList();
list2.addAll(list);
list2.add(i);
chaifendigui(n-i,list2);
}else{
System.out.println();
for (int j = 0; j < list.size()-1; j++) {
System.out.print(list.get(j)+" ");
}
}

}
}
public static void main(String[] args) {
Testxxx xx = new Testxxx();
xx.chaifen(10);
}
}

⑺ dble是数据库扩展名吗

DBLE是一种分布式数据型明纯库。

  1. DBLE官方网站:槐凳https://opensource.actionsky.com

  2. DBLE官方项目:https://github.com/actiontech/dble

  3. DBLE下载地址:卜咐https://github.com/actiontech/dble/releases

⑻ 图像分割——分水岭算法

姓名:谢意远

学号:19021110366T

嵌牛导读:图像中的目标物体是连接在一起的,则分割起来很困难,分水岭分割算法经常用于处理这类问题,通常会取得比较好的效果。

嵌牛鼻子:图像分割、分水岭绝源算法

嵌牛提问:分水岭算法具体有哪些步骤?

嵌牛正文:

一、综述

分水岭分割算法把图像看成一幅“地形图”,其中亮度比较强的区域像素值较大,而比较暗的区域像素值较小,通过寻找“汇水盆地”和“分水岭界限”,对图像进行分割。而直接应用分水岭分割算法的效果往往并不好,如果在图像中对前景对象和背景对象进行标注区别,再应用分水岭算法会取得较好的分割效果。基于标记控制的分水岭分割方法有以下基本步骤:

1  综述

分水岭分割算法把图像看成一幅“地形图”,其中亮度比较强的区域像素值较大,而比较暗的区域像素值较小,通过寻找“汇水盆地”和“分水岭界限”,对图像进行分割。直接应用分水岭分割算法的效果往往并不好,如果在图像中对前景对象和背景对象进行标注区别,再应用分水岭算法会取得较好的分割效果。基于标记控制的分水岭分割方法有以下基本步骤:

1.计算分割函数。图像中较暗的区域是要分割的对象

2.计算前景标志。这些是并运态每个对象内部连接的斑点像素。

3.计算背景标志。这些是不属于任何对象的要素。

4.修改分割函数,使其仅在前景和后景标记位置有极小值。

5.对修改后的分割函数做分水岭变换计算。

使用MATLAB图像处理工具箱

注:期间用到了很多图像处理工具箱的函数,例如fspecial、imfilter、watershed、label2rgb、imopen、imclose、imreconstruct、imcomplement、imregionalmax、bwareaopen、graythresh和imimposemin函数等。

2  步骤

 第一步:读入彩色图像,将其转化成灰度图像

clc; clear all; close all;

rgb = imread('pears.png');

if ndims(rgb) == 3

 I = rgb2gray(rgb);

else

 I = rgb;

end

figure('units', 'normalized', 'position', [0 0 1 1]);

第2步:将梯度幅值作为分割函数

使用Sobel边缘算子对图像进行水平和垂直方向的滤波,然后求取模值,sobel算子滤波后的图像在边界处会显示比较大的值,在没有边界处的值会很小。

hy = fspecial('sobel');

hx = hy';

Iy = imfilter(double(I), hy, 'replicate');

Ix = imfilter(double(I), hx, 'replicate');

gradmag = sqrt(Ix.^2 + Iy.^2);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(I,[]), title('灰度图像')

subplot(1, 2, 2); imshow(gradmag,[]), title('梯度幅值图像')

可否直接对梯度幅值图像使用分水岭算法?

L = watershed(gradmag);

Lrgb = label2rgb(L);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(gradmag,[]), title('梯度幅值图像')

subplot(1, 2, 2); imshow(Lrgb); title('梯度幅值做分水岭变换')

直接使用梯度模值图像进行分水岭算法得到的结果往往会存在过度分割的现悄指象。因此通常需要分别对前景对象和背景对象进行标记,以获得更好的分割效果。

第3步:标记前景对象

有多种方法可以应用在这里来获得前景标记,这些标记必须是前景对象内部的连接斑点像素。这个例子中,将使用形态学技术“基于开的重建”和“基于闭的重建”来清理图像。这些操作将会在每个对象内部创建单位极大值,使得可以使用imregionalmax来定位。

开运算和闭运算:先腐蚀后膨胀称为开;先膨胀后腐蚀称为闭。开和闭这两种运算可以除去比结构元素小的特定图像细节,同时保证不产生全局几何失真。开运算可以把比结构元素小的突刺滤掉,切断细长搭接而起到分离作用;闭运算可以把比结构元素小的缺口或孔填充上,搭接短的间隔而起到连接作用。

开操作是腐蚀后膨胀,基于开的重建(基于重建的开操作)是腐蚀后进行形态学重建。下面比较这两种方式。首先,用imopen做开操作。

se = strel('disk', 20);

Io = imopen(I, se);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(I, []); title('灰度图像');

subplot(1, 2, 2); imshow(Io), title('图像开操作')

接下来,通过腐蚀后重建来做基于开的重建计算。

Ie = imerode(I,se)

Iobr = imreconstruct(Ie,I);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(I, []); title('灰度图像');

subplot(1, 2, 2); imshow(Iobr, []), title('基于开的重建图像')

开操作后,接着进行闭操作,可以移除较暗的斑点和枝干标记。对比常规的形态学闭操作和基于闭的重建操作。首先,使用imclose:

Ioc = imclose(Io, se);

Ic = inclose(I,se);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(I, []); title('灰度图像');

subplot(2, 2, 2); imshow(Io, []); title('开操作图像');

subplot(2, 2, 3); imshow(Ic, []); title('闭操作图像');

subplot(2, 2, 4); imshow(Ioc, []), title('开闭操作');

现在使用imdilate,然后使用imreconstruct。注意必须对输入图像求补,对imreconstruct输出图像求补。IM2 = imcomplement(IM)计算图像IM的补集。IM可以是二值图像,或者RGB图像。IM2与IM有着相同的数据类型和大小。

Iobrd = imdilate(Iobr, se);

Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));

Iobrcbr = imcomplement(Iobrcbr);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(I, []); title('灰度图像');

subplot(2, 2, 2); imshow(Ioc, []); title('开闭操作');

subplot(2, 2, 3); imshow(Iobr, []); title('基于开的重建图像');

subplot(2, 2, 4); imshow(Iobrcbr, []), title('基于闭的重建图像');

通过比较Iobrcbr和loc可以看到,在移除小污点同时不影响对象全局形状的应用下,基于重建的开闭操作要比标准的开闭重建更加有效。计算Iobrcbr的局部极大来得到更好的前景标记。

fgm = imregionalmax(Iobrcbr);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 3, 1); imshow(I, []); title('灰度图像');

subplot(1, 3, 2); imshow(Iobrcbr, []); title('基于重建的开闭操作');

subplot(1, 3, 3); imshow(fgm, []); title('局部极大图像');

为了帮助理解这个结果,叠加前景标记到原图上。

It1 = rgb(:, :, 1);

It2 = rgb(:, :, 2);

It3 = rgb(:, :, 3);

It1(fgm) = 255; It2(fgm) = 0; It3(fgm) = 0;

I2 = cat(3, It1, It2, It3);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(rgb, []); title('原图像');

subplot(2, 2, 2); imshow(Iobrcbr, []); title('基于重建的开闭操作');

subplot(2, 2, 3); imshow(fgm, []); title('局部极大图像');

subplot(2, 2, 4); imshow(I2); title('局部极大叠加到原图像');

注意到大多闭塞处和阴影对象没有被标记,这就意味着这些对象在结果中将不会得到合理的分割。而且,一些对象的前景标记会一直到对象的边缘。这就意味着应该清理标记斑点的边缘,然后收缩它们。可以通过闭操作和腐蚀操作来完成。

se2 = strel(ones(5,5));

fgm2 = imclose(fgm, se2);

fgm3 = imerode(fgm2, se2);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(Iobrcbr, []); title('基于重建的开闭操作');

subplot(2, 2, 2); imshow(fgm, []); title('局部极大图像');

subplot(2, 2, 3); imshow(fgm2, []); title('闭操作');

subplot(2, 2, 4); imshow(fgm3, []); title('腐蚀操作');

这个过程将会留下一些偏离的孤立像素,应该移除它们。可以使用bwareaopen,用来移除少于特定像素个数的斑点。BW2 = bwareaopen(BW,P)从二值图像中移除所以少于P像素值的连通块,得到另外的二值图像BW2。

fgm4 = bwareaopen(fgm3, 20);

It1 = rgb(:, :, 1);

It2 = rgb(:, :, 2);

It3 = rgb(:, :, 3);

It1(fgm4) = 255; It2(fgm4) = 0; It3(fgm4) = 0;

I3 = cat(3, It1, It2, It3);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(I2, []); title('局部极大叠加到原图像');

subplot(2, 2, 2); imshow(fgm3, []); title('闭腐蚀操作');

subplot(2, 2, 3); imshow(fgm4, []); title('去除小斑点操作');

subplot(2, 2, 4); imshow(I3, []); title('修改局部极大叠加到原图像');

第4步:计算背景标记

现在,需要标记背景。在清理后的图像Iobrcbr中,暗像素属于背景,所以可以从阈值操作开始。

bw =im2bw(Iobrcbr, graythresh(Iobrcbr));

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(Iobrcbr, []); title('基于重建的开闭操作');

subplot(1, 2, 2); imshow(bw, []); title('阈值分割');

背景像素在黑色区域,但是理想情形下,不必要求背景标记太接近于要分割的对象边缘。通过计算“骨架影响范围”来“细化”背景,或者SKIZ,bw的前景。这个可以通过计算bw的距离变换的分水岭变换来实现,然后寻找结果的分水岭脊线(DL==0)。D = bwdist(BW)计算二值图像BW的欧几里得矩阵。对BW的每一个像素,距离变换指定像素和最近的BW非零像素的距离。bwdist默认使用欧几里得距离公式。BW可以由任意维数,D与BW有同样的大小。

D = bwdist(bw);

DL = watershed(D);

bgm = DL == 0;

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2, 2, 1); imshow(Iobrcbr, []); title('基于重建的开闭操作');

subplot(2, 2, 2); imshow(bw, []); title('阈值分割');

subplot(2, 2, 3); imshow(label2rgb(DL), []); title('分水岭变换示意图');

subplot(2, 2, 4); imshow(bgm, []); title('分水岭变换脊线图');

第5步:计算分割函数的分水岭变换

函数imimposemin可以用来修改图像,使其只是在特定的要求位置有局部极小。这里可以使用imimposemin来修改梯度幅值图像,使其只在前景和后景标记像素有局部极小。

gradmag2 = imimposemin(gradmag, bgm | fgm4);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(2,2,1)imshow(bgm,[]);title('分水岭变换脊线图');

subplot(2, 2, 2); imshow(fgm4, []); title('前景标记');

subplot(2, 2, 3); imshow(gradmag, []); title('梯度幅值图像');

subplot(2, 2, 4); imshow(gradmag2, []); title('修改梯度幅值图像');

最后,可以做基于分水岭的图像分割计算。

第6步:查看结果

一个可视化技术是叠加前景标记、背景标记、分割对象边界到初始图像。可以使用膨胀来实现某些要求,比如对象边界,更加清晰可见。对象边界定位于L==0的位置。

It1 = rgb(:, :, 1);

It2 = rgb(:, :, 2);

It3 = rgb(:, :, 3);

fgm5 = imdilate(L == 0, ones(3, 3)) | bgm | fgm4;

It1(fgm5) = 255; It2(fgm5) = 0; It3(fgm5) = 0;

I4 = cat(3, It1, It2, It3);

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(rgb, []); title('原图像');

subplot(1, 2, 2); imshow(I4, []); title('标记和对象边缘叠加到原图像');

可视化说明了前景和后景标记如何影响结果。在几个位置,部分的较暗对象与它们相邻的较亮的邻接对象相融合,这是因为受遮挡的对象没有前景标记。

另外一个有用的可视化技术是将标记矩阵作为彩色图像进行显示。标记矩阵,比如通过watershed和bwlabel得到的,可以使用label2rgb转换到真彩图像来显示。

Lrgb = label2rgb(L,'jet', 'w', 'shuffle');

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(rgb, []); title('原图像');

subplot(1, 2, 2); imshow(Lrgb); title('彩色分水岭标记矩阵');

可以使用透明度来叠加这个伪彩色标记矩阵在原亮度图像上进行显示。

figure('units', 'normalized', 'position', [0 0 1 1]);

subplot(1, 2, 1); imshow(rgb, []); title('原图像');

subplot(1, 2, 2); imshow(rgb, []); hold on;

himage = imshow(Lrgb);

set(himage, 'AlphaData', 0.3);

title('标记矩阵叠加到原图像');

⑼ 使用 sklearn 库中的 KMeans 实现彩色图像聚类分割

sklearn 库是最为常用且经典的机器学习库,里面封装了许多机器学习算法,此篇文章使用此库中的 KMeans 算法,从而实现图像的聚类分割。

本文不讲理论,只谈应用。

除了 sklearn 库之外,还需要一些图像处理的库,我引入了如下几个库:

我使用了 pylab 库来读入图片:

此时读入的 img 是一个三维 numpy 数组,其形状为 (height, width, 3) ,其中3是指通道数,即 RGB 三个通道。

但是, KMeans 传入的参数必须是二维数组,故,还需要将其打散为二维:

在此构建时,只需要使用最简单的方法即可:

参数有很多,我在构建的时候除了 n_clusters 都使用的默认值:

然后,使用 fit() 进行训练山滚:

聚类之后,有很多参数,比较重要的,以及此处需要用到的主要有俩:

聚类完成之后,需要将每个像素点重新填色,将同一类的像素点均填为此类聚类中心的颜色。

在此之前,首先需要得到图片的高度和宽度:

首先用 image.new() 重新创建一个图片,其语法如下:

然后需要用 putpixel() 方如渗法来填充像素,但是在此之前,还需要处理几个小细渣唯脊节:

RGB图中,每个通道都是 0-255 之间的整数,但是, kmeans.cluster_centers_ 中元素类型却是 float64 ,故在填充之前,还需要小小处理一番,将元素变为 int32 类型的。

直接转变类型不太合适,因为 kmeans.cluster_centers_ 毕竟是类似于一个属性值的东西,而且这个名字太长,换一个简短的也是好的。故重新复制一份再使用 astype 更改数据类型即可。

上面便提到, kmeans.labels_ 是一个一维数组,但是图片是二维的,所以将其恢复过来即可:

然后便可以 填充像素 了:

这里需要注意 putpixel() 方法,其的两个参数:

最后保存图片即可:

我使用了王者荣耀大乔的图片来做测试:

热点内容
协商下载ftp 发布:2025-08-25 13:30:12 浏览:772
159脚本怎么用 发布:2025-08-25 13:30:10 浏览:312
php查询域名 发布:2025-08-25 13:21:22 浏览:106
设有递归算法 发布:2025-08-25 13:14:11 浏览:417
ftp客户端程序 发布:2025-08-25 13:03:52 浏览:920
搭建网站阿里云服务器怎么选 发布:2025-08-25 12:54:40 浏览:954
linux怎么看目录 发布:2025-08-25 12:37:57 浏览:760
加密连接不可用 发布:2025-08-25 12:33:46 浏览:387
html5存储本地存储 发布:2025-08-25 11:47:41 浏览:116
文件在线加密 发布:2025-08-25 11:29:56 浏览:87