当前位置:首页 » 操作系统 » lbp算法实现

lbp算法实现

发布时间: 2023-03-18 06:17:47

① 基于lbp的adaboost人脸检测中弱分类器是怎么生成的

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。
目前,对Adaboost算法的研究以及应用大多集中于分类问题,同时近年也出 现了一些在回归问题上的应用。就其应用Adaboost系列主要解决了: 两类问题、 多类单标签问题、多类多标签问题、大类单标签问题,回归问题。它用全部的训练样本进行学习。
该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类能力。整个过程如下所示:
1. 先通过对N个训练样本的学习得到第一个弱分类器 ;
2. 将 分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;
3. 将 和 都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器 ;
4. 最终经过提升的强分类器 。即某个数据被分为哪一类要通过 , ……的多数表决。
2.3 Adaboost(Adaptive Boosting)算法
对于boosting算法,存在两个问题:
1. 如何调整训练集,使得在训练集上训练的弱分类器得以进行;
2. 如何将训练得到的各个弱分类器联合起来形成强分类器。
针对以上两个问题,adaboost算法进行了调整:
1. 使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练数据样本上;
2. 将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效果好的弱分类器具有较大的权重,而分类效果差的分类器具有较小的权重。
Adaboost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了Adaboost算法错误率 的上界,以及为了使强分类器 达到错误率 ,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaboost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度, 这样可以深入挖掘弱分类器算法的能力。
Adaboost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即 其中 n 为样本个数,在此样本分布下训练出一弱分类器 。对于 分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过 T 次循环,得到 T 个弱分类器,把这 T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
Adaboost算法的具体步骤如下:
1. 给定训练样本集 ,其中 分别对应于正例样本和负例样本; 为训练的最大循环次数;
2. 初始化样本权重 ,即为训练样本的初始概率分布;
3. 第一次迭代:
(1) 训练样本的概率分布 下,训练弱分类器:
(2) 计算弱分类器的错误率:
(3) 选取 ,使得 最小
(4) 更新样本权重:
(5) 最终得到的强分类器:
Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应性调整。上述算法中迭代了 次的主循环,每一次循环根据当前的权重分布 对样本x定一个分布P,然后对这个分布下的样本使用若学习算法得到一个错误率为 的弱分类器 ,对于这个算法定义的弱学习算法,对所有的 ,都有 ,而这个错误率的上限并不需要事先知道,实际上 。每一次迭代,都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概率,增大弱分类器分类效果较差的数据的概率。最终的分类器是 个弱分类器的加权平均。
第一部分:算法的产生
1996年Yoav Freund在Experiments with a New Boosting Algorithm中提出了AdaBoost.M1和AdaBoost.M2两种算法.其中,AdaBoost.M1是我们通常所说的Discrete AdaBoost;而AdaBoost.M2是M1的泛化形式.该文的一个结论是:当弱分类器算法使用简单的分类方法时,boosting的效果明显地统一地比bagging要好.当弱分类器算法使用C4.5时,boosting比bagging较好,但是没有前者的比较来得明显.
文献中记录的.M1算法
初始
1.获得一组样本(X)和它的分类(Y)和一个分类器(weaklearn).
2.赋予平均的权值分布D(i)
进入循环:T次
1. 赋予弱分类器权值D(i),使用弱分类器获得样本(X)到分类(Y)上的一个映射.(就是把某个X归到某个Y类中去)
2. 计算这个映射的误差e.e=各个归类错误的样本权值之和.如果e>1/2那么弱分类器训练失败,挑出循环,训练结束(这在二值检测中是不会发生的,而多值的情况就要看分类器够不够强健了)
3. 设B = e / ( 1 - e ).用于调整权值.因为e<1/2.因此0<B<1
4. 如果某样本分类正确,该样本的权值就乘以B让权值变小;如果分类错误,就让该样本的权值乘以B^-1或者不变,这样就让分类正确的样本权值降低,分类错误的样本权值升高,加强了对较难分类样本的分类能力
5. 权值均衡化
循环结束
1. 最终的分类器是,当一个X进入时,遍历所有Y,寻找使(h(x)=y的情况下,log(1/B)之和)最大者即是输出分类y
M2相比于M1的改进是允许弱分类器输出多个分类结果,并输出这几个分类结果的可能性(注意,这里不是概率)
.M2的流程是
1.获得一组样本(X)和它的分类(Y)和一个分类器(weaklearn).
2.对于某个样本Xi将它的分类归为一个正确分类Yi和其他不正确分类Yb
3.样本权值进行如下分布首先每个样本分到1/m的权值,然后每个不正确分类分到(1/m)/Yb的个数.也就是说样本权值是分到了每个不正确的分类上
进入循环
1. 求每个样本的权值,即每个样本所有不正确的分类的权值和,再求每个样本错误分类的权值,即不正确分类的权值除以该样本的权值.最后将每个样本的权值归一化
2. 将样本权值和某样本的不正确分类的权值输入到weaklearn,获得弱分类器的输出为各个分类的可能值
3. 计算伪错误率:公式见上
4. 更新权值
退出循环
最终的强分类器: 图贴不出来了...
1999年, ROBERT E. SCHAPIRE和YORAM SINGER,于Machine Learning发表论文: Improved Boosting Algorithms Using Confidence-rated Predictions.提出了更具一般性的AdaBoost形式.提出了自信率以改善AdaBoost的性能.并提出了解决多标签问题的AdaBoost.MH和AdaBoost.MR算法,其中AdaBoost.MH算法的一种形式又被称为Real Boost算法.
事实上:Discrete AdaBoost是指,弱分类器的输出值限定在{-1,+1},和与之相应的权值调整,强分类器生成的AdaBoost算法;Real AdaBoost是指,弱分类器输出一个可能度,该值的范围是整个R, 和与之相应的权值调整,强分类器生成的AdaBoost算法。事实上,Discrete到Real的转变体现了古典集合到模糊集合转变的思想
至于Gentle AdaBoost.考虑到(AdaBoost对”不像”的正样本权值调整很高,而导致了分类器的效率下降),而产生的变种算法.它较少地强调难以分类的样本.

② 人脸识别有什么优化算法还请各位大神赐教,简单一点的。谢谢

人脸识别技术概述
广义的人脸识别主要分为人脸检测(face detection)、特征提取(feature extraction)和人脸识别(face recognition)三个过程,如图1所示。
人脸,人脸识别,人脸识别技术
图1 典型的人脸识别过程
其中,第三步提到的人脸识别是狭义的人脸识别,即将待识别人脸所提取的特征与数据库中人脸的特征进行对比,根据相似度判别分类。而人脸识别又可以分为两个大类:一类是确认(verification),这是人脸图像与数据库中已存的该人图像比对的过程,回答你是不是你的问题;另一类是辨认(identification),这是人脸图像与数据库中已存的所有图像匹配的过程,回答你是谁的问题。显然,人脸辨认要比人脸确认困难,因为辨认需要进行海量数据的匹配。在辨认过程中,海量数据的处理、特征提取和分类算法的选择变得非常重要。识别率和识别速度是人脸识别技术中主要的衡量算法性能的指标。本文后面提到的人脸识别,主要指的是人脸辨认。
人脸识别技术原理
人脸识别算法发展到今天,大致上可以分为两类:基于特征的人脸识别算法和基于外观的人脸识别算法。其中,多数基于特征的人脸识别算法属于早期的人脸识别算法,现在已经不再使用。不过近些年出现了一些新的基于特征的算法,并取得不错的效果。而基于外观的人脸识别算法是由于实现简单,受到广泛关注。接下来将分别介绍两类人脸识别算法。
基于特征的人脸识别算法:早期的人脸识别算法主要是基于特征模板和几何约束来实现的。这一类算法首先对输入图像进行处理,提取出如眼睛、鼻子和嘴等面部特征和外观轮廓。然后计算这些面部特征之间的几何关系,如距离、面积和角度等。这样将输入图像转换为几何特征向量后,使用标准的统计模式识别技术进行匹配分类。由于算法利用了一些直观的特征,计算量小。不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。
人脸,人脸识别,人脸识别技术
图2 一些典型的面部几何特征示意图
以上这些方法都是通过一些特征模板和几何约束来检测特定的面部特征,并计算特征之间的关系。还有一些方法使用了图像的局部表示来提取特征。其中最受关注的方法是局部二值模式(LBP)算法。LBP方法首先将图像分成若干区域,在每个区域的像素3x3邻域中用中心值作阈值化,将结果看成是二进制数。图3显示了一个LBP算子。LBP算子的特点是对单调灰度变化保持不变。每个区域通过这样的运算得到一组直方图,然后将所有的直方图连起来组成一个大的直方图并进行直方图匹配计算进行分类。
人脸,人脸识别,人脸识别技术
图3 LBP算子
基于特征的人脸识别算法主要的优势在于对姿态、尺度和光照等变化鲁棒。由于多数特征是基于手动选择和先验知识,受图像本身的成像质量影响较少。另外,提取出的面部特征往往维数较低,匹配速度快。这些方法的缺点是自动特征提取的难度较大。如果特征集的鉴别能力弱,再多的后续处理也无法补偿本身的不足。
基于外观的人脸识别算法:基于外观的人脸识别算法也称为整体方法。它们使用图像的全局信息来辨识人脸。最简单的整体方法是用二维数组来存放图像的灰度值,然后直接对输入图像和数据库中的所有图像进行相关性比较。这种方法的缺点非常多,如易受环境影响、计算耗时等。其中一个重要的问题是这样的分类是在一个非常高维的空间中进行的。为了克服维数问题,一些算法使用统计降维方法来获取和保留更有用的信息,最典型的算法就是主成分分析(PCA)算法和线性鉴别分析(LDA)算法。
PCA算法指出任何特定的人脸可以由一个低维的特征子空间表示,并可以用这个特征子空间近似地重建。将输入人脸图像投影到特征子空间上得到的特征与已知的数据库进行比对来确定身份。PCA算法选取的特征最大化了人脸样本间的差异,但也保留了一些由于光照和面部表情产生的不必要的变化。而同一个人由于光照产生的变化可能会大于不同人之间的变化,如图4所示。LDA算法在最大化不同个体之间的样本差异的同时,最小化同一个体内部的样本差异。这样达到了人脸特征子空间的划分。图5是PCA和LDA算法的示例。其中,PCA的特征脸是由组成PCA特征子空间的特征向量按二维图像来排列得到的类似人脸的图像。LDA的Fisher脸也是同样道理。经过特征脸和Fisher脸重构得到的人脸图像在第四行。可以看到,PCA重构脸与输入人脸差异较小,但LDA的Fisher脸很难辨认,但突出了该个体的显着特征。PCA和LDA方法都假设存在一个最优的投影子空间。这个子空间的每个区域对应唯一的一个人。然而,事实上在人脸空间中许多人经常会映射到相同的区域中,因此这种假设并不成立。

来源:海鑫科金
http://www.hisign.com.cn/news/instry/2699.html

③ LBP和PCA算法的区别

LBP算法:全称Local binary pattern ,是机器视觉领域非常重要的一种特征。LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用。LBP 的算法非常简单,简单来说,就是对图像中的某一像素点的灰度值与其邻域的像素点的灰度值做比较。

PCA算法:全称principle component analysis,在力求数据信息丢失最少的原则下,对高纬度的变量空间降维 ,即研究指标体系的少数几个线性组合,并且这几个线性组合所构成的综合指标将尽可能多地保留信息。主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪。

若帮助到您,求采纳~

热点内容
协商下载ftp 发布:2025-08-25 13:30:12 浏览:772
159脚本怎么用 发布:2025-08-25 13:30:10 浏览:312
php查询域名 发布:2025-08-25 13:21:22 浏览:106
设有递归算法 发布:2025-08-25 13:14:11 浏览:417
ftp客户端程序 发布:2025-08-25 13:03:52 浏览:920
搭建网站阿里云服务器怎么选 发布:2025-08-25 12:54:40 浏览:954
linux怎么看目录 发布:2025-08-25 12:37:57 浏览:760
加密连接不可用 发布:2025-08-25 12:33:46 浏览:387
html5存储本地存储 发布:2025-08-25 11:47:41 浏览:116
文件在线加密 发布:2025-08-25 11:29:56 浏览:87