当前位置:首页 » 操作系统 » javakmeans聚类算法

javakmeans聚类算法

发布时间: 2023-03-18 18:47:53

1. K-Means聚类算法原理是怎么样的

问题:
姓名 身高 体重 眼睛
A 180 X 1.2
A X 140 X

A 180 140 X

A 168 120 1.5
姓名一样,用java算法,判断出是两个人?

2. 大数据挖掘需要学习哪些技术大数据的工作

处理大数据需要一个综合、复杂、多方位的系统,系统中的处理模块有很多,而数据挖掘技术以一个独立的身份存在于处理大数据的整个系统之中,与其他模块之间相辅相成、协调发展。在大数据时代中,数据挖掘技术的地位是无可比拟的。

数据挖掘的基本流程

在正式讲数据挖掘知识清单之前,我先和你聊聊数据挖掘的基本流程。

数据挖掘的过程可以分成以下 6 个步骤。

  1. 商业理解:数据挖掘不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求,在这个基础上,再对数据挖掘的目标进行定义。

  2. 数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。

  3. 数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。

  4. 模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。

  5. 模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。

  6. 上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。

数据挖掘的十大算法

为了进行数据挖掘任务,数据科学家们提出了各种模型,在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。

按照不同的目的,我可以将这些算法分成四类,以便你更好的理解。

  • 分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART

  • 聚类算法:K-Means,EM

  • 关联分析:Apriori

  • 连接分析:PageRank

1. C4.5

C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。

2. 朴素贝叶斯(Naive Bayes)

朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。

3. SVM

SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。如果你对超平面不理解,没有关系,我在后面的算法篇会给你进行介绍。

4. KNN

KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。

5. AdaBoost

Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。

6. CART

CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。

7. Apriori

Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。

8. K-Means

K-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。

9. EM

EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。

EM 算法经常用于聚类和机器学习领域中。

10. PageRank

PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。

最后

算法可以说是数据挖掘的灵魂,也是最精华的部分。这 10 个经典算法在整个数据挖掘领域中的得票最高的,后面的一些其他算法也基本上都是在这个基础上进行改进和创新。今天你先对十大算法有一个初步的了解,你只需要做到心中有数就可以了。

3. Java内存溢出主要有哪些类型

主要有三种类型
第一种OutOfMemoryError: PermGen space
发生这种问题的原意是程序中使用了缓坦大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:
1. 增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行:
JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m"
如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。
2. 清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。

第二种OutOfMemoryError: Java heap space
发生这种问题的原因是销卜java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:
1. 检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。
我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解亏哪穗决。
2. 增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m

第三种OutOfMemoryError:unable to create new native thread
这种错误在Java线程个数很多的情况下容易发生

4. JVM如何确保新对象的内存分配的线程安全性

在解决java内存溢出问题之前,需要对jvm(java虚拟机)的内存管理有一定的认识。jvm管理的内存大致包括三种不同类型的内存区域:Permanent Generation space(永久保存区域)、Heap space(堆区域)、Java Stacks(Java栈)。其中永久保存区域主要存放Class(类)和Meta的信息,Class第一次被Load的时候被放入PermGen space区域,Class需要存储的内容主要包括方法和静态属性。堆区域用来存放Class的实例(即对象),对象需要存储的内容主要是非静态属性。每次用new创建一个对象实例后,对象实例存储在堆区域中,这部分空间也被jvm的垃圾回收机制管理。而Java栈跟大多数编程语言包括汇编语言的栈功能相似,主要基本类型变量以及方法的输入输出参数。Java程序的每个线程中都有一个独立的堆栈。容易发生内存溢出问题的内存空间包括:Permanent Generation space和Heap space。
第一种OutOfMemoryError: PermGen space
发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:
增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。
清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。
第二种OutOfMemoryError: Java heap space
发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:
检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使灶丛用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进尘余行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。
增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m
第三种OutOfMemoryError:unable to create new native thread
在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。
那么是什么原因造成这种问题呢?
每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也隐兄樱会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。
这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。
给出一个有关能够创建线程的最大个数的估算公式:
(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads

对于jdk1.5而言,假设操作系统保留120M内存:
1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads
1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads

对于栈大小为256KB的jdk1.4而言,
1.5GB allocated to JVM: ~1520 threads
1.0GB allocated to JVM: ~3520 threads

对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

5. 发现公司里的大数据开发挣得很多,想转行,

转行这个词汇,一直是职场上此起彼伏的一个热门话题,相信很多朋友都想过或已经经历过转行。工作可谓是我们生存乃至生活的主要收入来源,谁都希望拥有一份高薪又稳定的工作,以此来改善自己的生活和实现自己的大大小小的梦想!但又担心转行后的工作待遇达不到自己的预期,顾虑重重……

不少想进入大数据分析行业的零基础学员经常会有这样一些疑问:大数据分析零基础应该怎么学习?自己适合学习大数据分析吗?人生,就是在不断地做选择,然后在这个选择过程中成长,让自己从一棵小树苗变成参天大树。就是我们每个对大数据充满幻想终于下定决心行动的学员的选择,我们给了自己4个月的时间,想要在大数据分析这个领域汲取养分,让自己壮大成长。

【明确方向】

通过国家的战略规划,看到BAT的大牛们都在大数据行业布局,新闻媒体追捧这大数据分析行业的项目和热点,我想如果我还没有能力独立判断的时候,跟着国家政策和互联网大佬们的步调走,这应该是错不了的。

【付诸行动】

明确了方向之后,我就整装待发,刚开始是在网络上购买了很多的视频教程,也买了很多书籍,但是最大的问题就在于,我不知道怎么入手,没关系,有信心有耐心肯定能战胜困难,我坚持了一个月,学习的节奏越来越乱,陆陆续续出现了很多的问题,没人指导,请教了几个业内的朋友,但对方工作繁忙,问了几次之后就不好意思了,自学陷入了死循环。

意识到我学习效率的低下,以及无人指导的问题想想未来的康庄大道,咬咬牙告诉自己,一定好好好学,不然就浪费太多时间最后还会是一无所获。最后找到组织(AAA教育)一起学习进步!

大数据分析零基础学习路线,有信心能坚持学习的话,那就当下开始行动吧!

一、大数据技术基础

1、linux操作基础

linux系统简介与安装

linux常用命令–文件操作

linux常用命令–用户管理与权限

linux常用命令–系统管理

linux常用命令–免密登陆配置与网络管理

linux上常用软件安装

linux本地yum源配置及yum软件安装

linux防火墙配置

linux高级文本处理命令cut、sed、awk

linux定时任务crontab

2、shell编程

shell编程–基本语法

shell编程–流程控制

shell编程–函数

shell编程–综合案例–自动化部署脚本

3、内存数据库redis

redis和nosql简介

redis客户端连接

redis的string类型数据结构操作及应用-对象缓存

redis的list类型数据结构操作及应用案例-任务调度队列

redis的hash及set数据结构操作及应用案例-购物车

redis的sortedset数据结构操作及应用案例-排行榜

4、布式协调服务zookeeper

zookeeper简介及应用场景

zookeeper集群安装部署

zookeeper的数据节点与命令行操作

zookeeper的java客户端基本操作及事件监听

zookeeper核心机制及数据节点

zookeeper应用案例–分布式共享资源锁

zookeeper应用案例–服务器上下线动态感知

zookeeper的数据一致性原理及leader选举机制

5、java高级特性增强

Java多线程基本知识

Java同步关键词详解

java并发包线程池及在开源软件中的应用

Java并发包消息队里及在开源软件中的应用

Java JMS技术

Java动态代理反射

6、轻量级RPC框架开发

RPC原理学习

Nio原理学习

Netty常用API学习

轻量级RPC框架需求分析及原理分析

轻量级RPC框架开发

二、离线计算系统

1、hadoop快速入门

hadoop背景介绍

分布式系统概述

离线数据分析流程介绍

集群搭建

集群使用初步

2、HDFS增强

HDFS的概念和特性

HDFS的shell(命令行客户端)操作

HDFS的工作机制

NAMENODE的工作机制

java的api操作

案例1:开发shell采集脚本

3、MAPREDUCE详解

自定义hadoop的RPC框架

Maprece编程规范及示例编写

Maprece程序运行模式及debug方法

maprece程序运行模式的内在机理

maprece运算框架的主体工作流程

自定义对象的序列化方法

MapRece编程案例

4、MAPREDUCE增强

Maprece排序

自定义partitioner

Maprece的combiner

maprece工作机制详解

5、MAPREDUCE实战

maptask并行度机制-文件切片

maptask并行度设置

倒排索引

共同好友

6、federation介绍和hive使用

Hadoop的HA机制

HA集群的安装部署

集群运维测试之Datanode动态上下线

集群运维测试之Namenode状态切换管理

集群运维测试之数据块的balance

HA下HDFS-API变化

hive简介

hive架构

hive安装部署

hvie初使用

7、hive增强和flume介绍

HQL-DDL基本语法

HQL-DML基本语法

HIVE的join

HIVE 参数配置

HIVE 自定义函数和Transform

HIVE 执行HQL的实例分析

HIVE最佳实践注意点

HIVE优化策略

HIVE实战案例

Flume介绍

Flume的安装部署

案例:采集目录到HDFS

案例:采集文件到HDFS

三、流式计算

1、Storm从入门到精通

Storm是什么

Storm架构分析

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

Storm集群部署实战

Storm+Kafka+Redis业务指标计算

Storm源码下载编译

Strom集群启动及源码分析

Storm任务提交及源码分析

Storm数据发送流程分析

Storm通信机制分析

Storm消息容错机制及源码分析

Storm多stream项目分析

编写自己的流式任务执行框架

2、Storm上下游及架构集成

消息队列是什么

Kakfa核心组件

Kafka集群部署实战及常用命令

Kafka配置文件梳理

Kakfa JavaApi学习

Kafka文件存储机制分析

Redis基础及单机环境部署

Redis数据结构及典型案例

Flume快速入门

Flume+Kafka+Storm+Redis整合

四、内存计算体系Spark

1、scala编程

scala编程介绍

scala相关软件安装

scala基础语法

scala方法和函数

scala函数式编程特点

scala数组和集合

scala编程练习(单机版WordCount)

scala面向对象

scala模式匹配

actor编程介绍

option和偏函数

实战:actor的并发WordCount

柯里化

隐式转换

2、AKKA与RPC

Akka并发编程框架

实战:RPC编程实战

3、Spark快速入门

spark介绍

spark环境搭建

RDD简介

RDD的转换和动作

实战:RDD综合练习

RDD高级算子

自定义Partitioner

实战:网站访问次数

广播变量

实战:根据IP计算归属地

自定义排序

利用JDBC RDD实现数据导入导出

WorldCount执行流程详解

4、RDD详解

RDD依赖关系

RDD缓存机制

RDD的Checkpoint检查点机制

Spark任务执行过程分析

RDD的Stage划分

5、Spark-Sql应用

Spark-SQL

Spark结合Hive

DataFrame

实战:Spark-SQL和DataFrame案例

6、SparkStreaming应用实战

Spark-Streaming简介

Spark-Streaming编程

实战:StageFulWordCount

Flume结合Spark Streaming

Kafka结合Spark Streaming

窗口函数

ELK技术栈介绍

ElasticSearch安装和使用

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

7、Spark核心源码解析

Spark源码编译

Spark远程debug

Spark任务提交行流程源码分析

Spark通信流程源码分析

SparkContext创建过程源码分析

DriverActor和ClientActor通信过程源码分析

Worker启动Executor过程源码分析

Executor向DriverActor注册过程源码分析

Executor向Driver注册过程源码分析

DAGScheler和TaskScheler源码分析

Shuffle过程源码分析

Task执行过程源码分析

五、机器学习算法

1、python及numpy库

机器学习简介

机器学习与python

python语言–快速入门

python语言–数据类型详解

python语言–流程控制语句

python语言–函数使用

python语言–模块和包

phthon语言–面向对象

python机器学习算法库–numpy

机器学习必备数学知识–概率论

2、常用算法实现

knn分类算法–算法原理

knn分类算法–代码实现

knn分类算法–手写字识别案例

lineage回归分类算法–算法原理

lineage回归分类算法–算法实现及demo

朴素贝叶斯分类算法–算法原理

朴素贝叶斯分类算法–算法实现

朴素贝叶斯分类算法–垃圾邮件识别应用案例

kmeans聚类算法–算法原理

kmeans聚类算法–算法实现

kmeans聚类算法–地理位置聚类应用

决策树分类算法–算法原理

决策树分类算法–算法实现

时下的大数据分析时代与人工智能热潮,相信有许多对大数据分析师非常感兴趣、跃跃欲试想着转行的朋友,但面向整个社会,最不缺的其实就是人才,对于是否转行大数据分析行列,对于能否勇敢一次跳出自己的舒适圈,不少人还是踌躇满志啊!毕竟好多决定,一旦做出了就很难再回头了。不过如果你已经转行到大数据分析领域,就不要后悔,做到如何脱颖而出才是关键。因此本文给出一些建议,针对想要转行大数据分析行列且是零基础转行的小伙伴们,希望对你们有所裨益,也希望你们将来学有所成,不后悔,更不灰心!

相关推荐:

《转行大数据分析师后悔了》、《ui设计培训四个月骗局大爆料》、《零基础学大数据分析现实吗》、《大数据分析十八般工具》

6. k-means算法怎么为对称矩阵进行聚类

几种典型的聚类融合算法:
1.基于超图划分的聚类融合算法
(1)Cluster-based Similarity Partitioning Algorithm(GSPA)
(2)Hyper Graph-Partitioning Algorithm(HGPA)
(3)Meta-Clustering Algorithm(MCLA)
2.基于关联矩阵的聚类融合算法
Voting-K-Means算法。
3.基于投票策略的聚类融合算法
w-vote是一种典型的基于加权投票的聚类融合算法。
同时还有基于互信息的聚类融合算法和基于有限混合模型的聚类融合算法。
二、基于关联矩阵的聚类融合算法——Voting-K-Means算法
Voting-K-Means算法是一种基于关联矩阵的聚类融合算法,关联矩阵的每一行和每一列代表一个数据点,关联矩阵的元素表示数据集中数据点对共同出现在同一个簇中的概率。
算法过程:
1.在一个数据集上得到若干个聚类成员;
2.依次扫描这些聚类成员,如果数据点i和j在某个聚类成员中被划分到同一个簇中,那么就在关联矩阵对应的位置计数加1;关联矩阵中的元素值越大,说明该元素对应的两个数据点被划分到同一个簇中的概率越大;
3.得到关联矩阵之后,Voting-K-Means算法依次检查关联矩阵中的每个元素,如果它的值大于算法预先设定的阀值,就把这个元素对应的两个数据点划分到同一个簇中。

Voting-K-Means算法的优缺点:
Voting-K-Means算法不需要设置任何参数,在聚类融合的过程中可以自动地的选择簇的个数 并且可以处理任意形状的簇。因为Voting-K-Means算法在聚类融合过程中是根据两个数据点共同出现在同一个簇中的可能性大小对它们进行划分的,所以只要两个数据点距离足够近,它们就会被划分到一个簇中。
Voting-K-Means算法的缺点是时间复杂度较高,它的时间复杂度是O(n^2);需要较多的聚类成员,如果聚类成员达不到一定规模,那么关联矩阵就不能准确反映出两个数据点出现在同一个簇的概率。

package clustering;import java.io.FileWriter;import weka.clusterers.ClusterEvaluation;import weka.clusterers.SimpleKMeans;import weka.core.DistanceFunction;import weka.core.EuclideanDistance;import weka.core.Instances;import weka.core.converters.ConverterUtils.DataSource;import weka.filters.unsupervised.attribute.Remove;public class Votingkmeans2 extends SimpleKMeans { /** 生成的序列号 */ private static final long serialVersionUID = 1557181390469997876L; /** 划分的簇数 */ private int m_NumClusters; /** 每个划分的簇中的实例的数量 */ public int[] m_ClusterSizes; /** 使用的距离函数,这里是欧几里德距离 */ protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); /** 实例的簇号赋值 */ protected int[] m_Assignments; /** 设定聚类成员融合阀值 */ private final static double THREASOD = 0.5; /** 生成一个聚类器 */ public void buildClusterer(Instances data) throws Exception{ final int numinst = data.numInstances(); // 数据集的大小 double [][]association = new double[numinst][numinst]; // 定义并初始化一个关联矩阵 int numIteration = 40; // 设置生成的聚类成员数 final int k = (int)Math.sqrt(numinst); // 设置K-Means聚类算法参数——簇数 for(int i = 0; i < numIteration; i++) { if(data.classIndex() == -1) data.setClassIndex(data.numAttributes() - 1); // 索引是从0开始 String[] filteroption = new String[2]; filteroption[0] = "-R"; filteroption[1] = String.valueOf(data.classIndex() + 1);// 索引是从1开始 Remove remove = new Remove(); remove.setOptions(filteroption); remove.setInputFormat(data); /* 使用过滤器模式生成新的数据集;新数据集是去掉类标签之后的数据集 */ Instances newdata = weka.filters.Filter.useFilter(data, remove); /* 生成一个K-Means聚类器 */ SimpleKMeans sm = new SimpleKMeans(); sm.setNumClusters(k); sm.setPreserveInstancesOrder(true); // 保持数据集实例的原始顺序 sm.setSeed(i); // 通过设置不同的种子,设置不同的簇初始中心点,从而得到不同的聚类结果 sm.buildClusterer(newdata); int[] assigm = sm.getAssignments(); // 得到数据集各个实例的赋值 /* 建立关联矩阵 */ for(int j = 0; j < numinst; j++) { for(int m = j; m < numinst; m++) { if(assigm[j] == assigm[m]) { association[j][m] = association[j][m] + 1.0 / numIteration ; } } } } System.out.println(); /* 将生成的关联矩阵写入.txt文件(注:生成的txt文本文件在e:/result.txt中) */ FileWriter fw = new FileWriter("e://result.txt"); for(int j = 0; j < numinst; j++) { for(int m = j; m < numinst; m++) { //由于关联矩阵是对称的,为了改进算法的效率,只计算矩阵的上三角 String number = String.format("%8.2f", association[j][m]); fw.write(number); } fw.write("\n"); } /* 处理关联矩阵,分别考虑了两种情况 :1.关联矩阵中某个元素对应的两个数据点已经被划分到了不同的簇中 * 2.两个数据点中有一个或者两个都没有被划分到某个簇中。 */ int[] flag = new int[numinst]; int[] flagk = new int[k]; int[] finallabel = new int[numinst]; for(int m = 0; m < numinst; m++) { for(int n = m; n < numinst; n++) { if(association[m][n] > THREASOD) { if(flag[m] == 0 && flag[n] == 0) { // 两个数据点都没有被划分到某个簇中, int i = 0; // 将他们划分到同一个簇中即可 while (i < k && flagk[i] == 1) i = i + 1; finallabel[m] = i; finallabel[n] = i; flag[m] = 1; flag[n] = 1; flagk[i] = 1; } else if (flag[m] == 0 && flag[n] == 1) { // 两个数据点中有一个没有被划分到某个簇中, finallabel[m] = finallabel[n]; // 将他们划分到同一个簇中即可 flag[m] = 1; } else if (flag[m] == 1 && flag[n] == 0) { finallabel[n] = finallabel[m]; flag[n] = 1; } else if (flag[m] == 1 && flag[n] == 1 && finallabel[m] != finallabel[n]) { // 两个数据点已被划分到了不同的簇中, flagk[finallabel[n]] = 0; // 将它们所在的簇合并 int temp = finallabel[n]; for(int i = 0; i < numinst; i++) { if(finallabel[i] == temp) finallabel[i] = finallabel[m]; } } } } } m_Assignments = new int[numinst]; System.out.println("基于关联矩阵的聚类融合算法——Voting-K-Means算法的最终聚类结果"); for(int i = 0; i < numinst; i++) { m_Assignments[i] = finallabel[i]; System.out.print(finallabel[i] + " "); if((i+1) % 50 == 0) System.out.println(); } for(int i = 0; i < k; i++) { if(flagk[i] == 1) m_NumClusters++; } } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { return "Voting-KMeans\n"; } public static void main(String []args) { try {String filename="e://weka-data//iris.arff"; Instances data = DataSource.read(filename); Votingkmeans2 vk = new Votingkmeans2(); vk.buildClusterer(data); /* 要生成Voting-K-Means的聚类评估结果包括准确率等需要覆盖重写toString()方法; * 因为没有覆盖重写,所以这里生产的评估结果没有具体内容。 */ ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(vk); eval.evaluateClusterer(new Instances(data)); System.out.println(eval.clusterResultsToString()); } catch (Exception e) { e.printStackTrace(); }}}

分析代码时注意:得到的类成员变量m_Assignments就是最终Voting-K-Means聚类结果;由于是采用了开源机器学习软件Weka中实现的SimpleKMeans聚类算法,初始时要指定簇的个数,这里是数据集大小开根号向下取整;指定的阀值为0.5,即当关联矩阵元素的值大于阀值时,才对该元素对应的两个数据点进行融合,划分到一个簇中,考虑两种情况,代码注释已有,这里不再详述。但聚类融合的实验结果并不理想,莺尾花数据集irsi.arff是数据挖掘实验中最常用的数据集,原数据集共有三个类;但本实验进行四十个聚类成员的融合,其最终聚类结果划分成两个簇;其原因可能有两个:一是算法本身的问题,需要使用其他更加优化的聚类融合算法;二是实现上的问题,主要就在聚类结果的融合上,需要进行一步对照关联矩阵进行逻辑上的分析,找出代码中的问题。关联矩阵文本文件http://download.csdn.net/detail/lhkaikai/7294323

---------------------

本文来自 Turingkk 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/lhkaikai/article/details/25004823?utm_source=

7. 做了这么多年Java开发,如何快速转行大数据

一、学习大数据是需要学习java和linux的

二、你有多年的java开发经验,那么可以直接跳过java课程部分,学习大数据技术!

三、分享一份大数据技术课程大纲供你了解参考

热点内容
php一键环境 发布:2025-08-25 20:20:34 浏览:161
无油螺杆式空气压缩机 发布:2025-08-25 20:16:06 浏览:815
python文件到输出到文件 发布:2025-08-25 20:15:58 浏览:133
python打印日志 发布:2025-08-25 19:37:00 浏览:413
vr哪个配置最好 发布:2025-08-25 19:36:51 浏览:836
解压挤痘视频 发布:2025-08-25 19:34:31 浏览:310
老鼠脚本是什么意思 发布:2025-08-25 19:27:59 浏览:476
androidlongstring 发布:2025-08-25 19:25:00 浏览:495
app制作androidstudio 发布:2025-08-25 19:14:12 浏览:242
hibernate连接数据库 发布:2025-08-25 18:55:37 浏览:720