数据搜索算法
A. 查找算法的作用
查找就是在一个数据集合里查找到你需要的数据,查找算法就是在查找过程中使用的算法。查找算法有好多,最基础的就是线性表查找。
因为提到了算法,所以需要注意的是时间复杂度跟空间复杂度,进而涉及到数据的存储方式,比如数组,链表,矩阵,树,图等等数据结构,这些数据结构可以帮助你降低算法的复杂度。
如果有兴趣,随便找本数据结构书翻翻,里面或多或少都会有讲解。用关键字标识一个数据元素,查找时根据给定的某个值,在表中确定一个关键字的值等于给定值的记录或数据元素。在计算机中进行查找的方法是根据表中的记录的组织结构确定的。顺序查找也称为线形查找,从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。二分查找要求线形表中的结点按关键字值升序或降序排列,用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。分块查找也称为索引查找,把线形分成若干块,在每一块中的数据元素的存储顺序是任意的,但要求块与块之间须按关键字值的大小有序排列,还要建立一个按关键字值递增顺序排列的索引表,索引表中的一项对应线形表中的一块,
B. 大数据核心算法有哪些
1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9、离散微分算法(Discrete differentiation)。
C. 数据结构中关于数据查询的算法有哪些
数据查询分静态查找和动态查找:
静态查找有:顺序查找、有顺序表的折半查找、分块查
动态查找主要用二叉排序数查找。
哈希表 常用的哈希函数有;直接寻址法,除留余数法,数字分析法,平方取中法,折叠法。
一般情况下这些就够用了
D. 全文检索算法,请问谁能给我点头绪落,不懂啊。。
全文检索技术
全文检索是指索引程序扫描文章中的每个词并建立对应索引,记录该词出现的位置和次数。当通过搜索引擎查询时,检索程序就在记录的索引进行查找并返回给用户。全文检索又分为基于字的全文索引和基于词的全文索引。基于字的全文索引会对内容中的每个字建立索引并记录,此方法查全率高,但查准率低,特别是对于中文,有时搜索马克,会列出马克思的结果。基于词的全文索引是把一个词语作为一个单位进行索引记录,并能处理同义词。搜索引擎有自己的词库,当用户搜索时,搜索引擎会从词库中抽取关键词作为索引项,这样可以大大提高检索的准确率。
中文分词技术
一直以来大家都比较熟悉网络,网络有自己的中文分词技术。一般采用的包括正向最大匹配,反向最大匹配,最佳匹配法,专家系统方法等。其中最大正向匹配是最常用的分词解决方案,它采用机械式算法,通过建立词典并进行正向最大匹配对中文进行分词。举个简单的例子比如搜索“北京大学在哪里”,则返回结果很多都是包含北京大学,北大等词语的网页,搜索引擎就是采用正向最大匹配去判断,把北京大学当做一个词语来索引记录并返回。当然,正向最大匹配也有不完整性,比如长度过长的词语,搜索引擎有时无法准确的分词,或者对前后都相互关联的词无法准确分词。例如“结合成分子时”,会被返回结合、成分、子时,而有时我们想要的关键词是“分子”。
很多时候网络都会根据自己词库中词语的权重进行拆分,权重的计算基于生活各个方面,比较复杂,搜索引擎要做的就是返回用户最想要的结果,有时站长们做网站要站在用户的角度去考虑问题,其实这也是站在搜索引擎的角度考虑问题,不论在确定目标关键词或者是长尾关键词时,都可以根据中文分词的原理来选择,这样可以最大化的减少无用功。
分词原理不断在变化,不断在更新,我们应该继续学习,只有掌握了本质才能抓住实质。
E. 基于数据库搜索的算法,关键有哪几点
B+、B- Tree(mysql,oracle,mongodb)
主要用在关系数据库的索引中,如oracle,mysql innodb;mongodb中的索引也是B-树实现的;还有HBase中HFile中的DataBlock的索引等等。
动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树(Red-Black Tree ),B-tree/B+-tree/ B*-tree (B~Tree)。前三者是典型的二叉查找树结构,其查找的时间复杂度O(log2N)与树的深度相关,那么降低树的深度自然会提高查找效率。
但是咱们有面对这样一个实际问题:就是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下,那么如何减少树的深度(当然是不能减少查询的数据量),一个基本的想法就是:采用多叉树结构(由于树节点元素数量是有限的,自然该节点的子树数量也就是有限的)。
也就是说,因为磁盘的操作费时费资源,如果过于频繁的多次查找势必效率低下。那么如何提高效率,即如何避免磁盘过于频繁的多次查找呢?根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,那么是不是便能有效减少磁盘查找存取的次数呢?那这种有效的树结构是一种怎样的树呢?
这样我们就提出了一个新的查找树结构——多路查找树。根据平衡二叉树的启发,自然就想到平衡多路查找树结构,也就是B~tree,即B树结构(后面,我们将看到,B树的各种操作能使B树保持较低的高度,从而达到有效避免磁盘过于频繁的查找存取操作,从而有效提高查找效率)。
Hash表+桶(redis)
mysql中的adaptive hash index,redis中的数据存储实现都是采用hash,可以高效的进行数据的查询。
哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
哈希表的做法其实很简单,就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里。
而当使用哈希表进行查询的时候,就是再次使用哈希函数将key转换为对应的数组下标,并定位到该空间获取value,如此一来,就可以充分利用到数组的定位性能进行数据定位
数组的特点是:寻址容易,插入和删除困难;而链表的特点是:寻址困难,插入和删除容易。综合两者特性,设计一种寻址容易,插入删除也容易的数据结构,如拉链法实现的哈希表。
Booleam Filter(HBase)
HBase中的rowkey设置建立Booleam Filter映射,用于快速判断rowkey是否在一个HFile中。在分布式数据库中用的比较多。
基于BitMap的存储结构,采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素量很多时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不再集合内。
F. 常见的数据检索算法有哪些数据库都采用什么样的检索方式如何提高检索的效率
信息检索方法包括:普通法、追溯法和分段法。1、普通法是利用书目、文摘、索引等检索工具进行文献资料查找的方法。运用这种方法的关键在于熟悉各种检索工具的性质、特点和查找过程,从不同角度查找。普通法又可分为顺检法和倒检法。2、追溯法是利用已有文献所附的参考文献不断追踪查找的方法,在没有检索工具或检索工具不全时,此法可获得针对性很强的资料,查准率较高,查全率较差。3、分段法是追溯法和普通法的综合,它将两种方法分期、分段交替使用,直至查到所需资料为止。(6)数据搜索算法扩展阅读检索原因信息检索是获取知识的捷径美国普林斯顿大学物理系一个年轻大学生名叫约瀚·菲利普,在图书馆里借阅有关公开资料,仅用四个月时间,就画出一张制造原子弹的设计图。他设计的原子弹,体积小(棒球大小)、重量轻(7.5公斤)、威力大(相当广岛原子弹3/4的威力),造价低(当时仅需两千美元),致使一些国家(法国、巴基斯坦等)纷纷致函美国大使馆,争相购买他的设计拷贝。二十世纪七十年代,美国核专家泰勒收到一份题为《制造核弹的方法》的报告,他被报告精湛的技术设计所吸引,惊叹地说:“至今我看到的报告中,它是最详细、最全面的一份。”
G. 数据查找的常见数据查找方法
对于随机文件,如果是计算寻址结构的文件可以采用直接查找的方法,即利用关键字值和记录位置之间的对应关系直接找到该绝态磨记录。如果是索引结构的并斗文件,先用上述方法查找索引,在索引中找到相应关键字值后,再由索引表上对应的地址找到相应的记录。不同查找方法的效率很不相同,这主要取决于文件结构和查询问题的特点,查询算法本身也闭圆是重要影响因素。
H. 数据的算法都有哪些……
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的 NPC的移动计算,或线上游戏的 BOT的移动计算上。该算法像 Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于 人工智能领域,1976 年Lowerre在其称为 HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在 数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。 动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在 数学中,辗转相除法,又称 欧几里得算法,是求 最大公约数的算法。辗转相除法首次出现于 欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至 东汉出现的《九章算术》。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该 函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列 函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种 数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计 数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经 专利失效,其被广泛地用于 电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的 数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列
等等这些,算法很多。
I. 数据结构中有哪些查找算法
和二分查找性能接近的:既然可以二分查找,那么关键字肯定可以满足全序关系。那么可以用二叉查找树,一般的就是平摊O(logn),最坏O(n)。如果用平衡树,如AVL,Treap,Splay等等,可以做到保持O(logn)的界。
比二分查找性能更优的:大概只有Hash了吧。如果Hash函数设计的好,基本可以认为是O(1)的。这个你最好系统学习一下,尤其是字符串的Hash函数。
J. 数据结构:重要的查找算法有哪些
折半查找也就是二分查找,它必须满足排序关系。
查找也可以用二叉查找树,一般复杂度为O(logn),最坏为O(n)。
也可用平衡树进行查找,如AVL,Treap,Splay等,可以做到保持O(logn)。
比二分查找性能更优的:大概只有Hash了吧。如果Hash函数设计的好,基本可以认为是O(1)
堆排序比较有意思,值得研究一下,理解了后,很有用~,也很重要。