当前位置:首页 » 操作系统 » 关系型数据库与大数据

关系型数据库与大数据

发布时间: 2023-03-29 04:14:12

Ⅰ 大数据的特征有哪些

Volume:数据量巨大。
体量大是大数据区分于传统数据最显着的特征。 一般关系型数据库处理的数据量在TB级,大数据所处理的数据量通常在PB级以上。
Variety:数据类型多。
大数据所处理的计算机数据类型早已不是单一的文本形式或者结构化数据库中的表,它包括订单、日志、BLOG、微博、音频、视频等各种复杂结构的数据。
Velocity:数据流动快。
速度是大数据区分桐毕销于传统数据的重要特征。 在海量数据面前,需要实时分析获数陵取需要的信息,处理数据的局游效率就是组织的生命。

Ⅱ 大数据是什么专业学的是些什么

大数据专业全称“大数据采集与管理专业”。
大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。
1、行业现状:现在越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
2、课程设置:大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力备源。
3、核心技术:
(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和Nosql Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级配世数据库的构建、管理、开发及应用。
(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。
(4)海量数据分析与数据挖掘。详细介绍数据挖掘技培滚肢术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问
(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。

Ⅲ 数据库主要分为哪两种类型

数据库主要分为关系数据库和非关系型数据库(NoSQL)。

1、关系数据库

关系型数据库,存储的格式可以直观地反映实体间的关系。关系型数据库和常见的表格比较相似,关系型数据库中表与表之间是有很多复杂的关联关系的。

常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。

2、非关系型数据库(NoSQL)

指分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术与CAP理论、一致性哈希算法有密切关系。NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。



(3)关系型数据库与大数据扩展阅读

关系数据库分为两类:一类是桌面数据库,例如Access、FoxPro和dBase等;另一类是客户/服务器数据库,例如SQL Server、Oracle和Sybase等。桌面数据库用于小型的、单机的应用程序,它不需要网络和服务器,实现起来比较方便,但它只提供数据的存取功能。

客户/服务器数据库主要适用于大型的、多用户的数据库管理系统,应用程序包括两部分:一部分驻留在客户机上,用于向用户显示信息及实现与用户的交互;另一部分驻留在服务器中,主要用来实现对数据库的操作和对数据的计算处理。

Ⅳ 请分析“大数据”的存储方式及主要业务跟课中所讲解的关系型数据库有何区别

大数据的存储方式主要使用noSQL
这种数据库有几个特点,一个是针对大数据环境,它是分布式的,另一个他的操作非常原始,只有Keyvalue读写
关系数据库呢,一般都是单机的,因为关系数据库最强大的就是事务,事物在分布式环境很难实现,所以关系数据库通常都是单机版,另外一个是关系数据库,它的计算层次更高,是表格上的运算

Ⅳ 传统的关系型数据库在应对大数据时有哪些不足又是怎样改进的2、cap理论和应用求解答!!急!

关系型数据库的主要特征 1)数据集中控制,在文件管理方法中,文件是分散的,每个用户或每种处理都有各自的文件,这些文件之间一般是没有联系的,

Ⅵ 大数据与关系型数据库水火不容吗

不冲突,各有用处。
很多大数据应用还是基于关系型数据库。
大数据一般和具体应用相关,关系型数据库是一种工具。

Ⅶ 请问大数据的关键技术有哪些

分布式计算,非结构化数据库,分类、聚类等算法。

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

(7)关系型数据库与大数据扩展阅读:

大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

Ⅷ 大数据三大核心技术:拿数据、算数据、卖数据!

大数据的由来

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

1

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大数据的应用领域

大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。

制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。

互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。

城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。

体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。

安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。

个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC

Logstash

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

Zookeeper

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Ku

Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显着减少磁盘上的存储。

数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求

数据查询分析

Hive

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark

Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

简单说有三大核心技术:拿数据,算数据,卖数据。

Ⅸ 大数据处理服务器配置和关系型数据库服务器配置哪个高

关系型数据库简介关系型数据库以行和列的形式存储数据,以便于用户理解。这一系列的行和列被称为表,一组表组成了数据库。用户用查询(Query)来检索数据库中的数据。一个Query是一个用于指定数据库中行和列的SELECT语句。关系型数据库通常包含下列组件:客户端应用程序(Client)数据库服务器(Server)数据库(Database)StructuredQueryLanguage(SQL)Client端和Server端的桥梁,Client用SQL来象Server端发送请求,Server返回Client端要求的结果。现在流行的大型关系型数据库有IBMDB2、IBMUDB、Oracle、SQLServer、SyBase、Informix等。关系型数据库并不是唯一的高级数据库模型,也完全不是性能最优的模型,但是关系型数据库确实是现今使用最广泛、最容易理解和使用的数据库模型。大多数的企业级系统数据库都采用关系型数据库,关系型数据库的概念是掌握数据库开发的基础,所以本节的问题也成为.NET面试中频繁出现的问题之一。所涉及的知识点关系型数据库的概念关系型数据库的优点分迅配缺析问题关系型数据库的概念所谓关系型数据库,是指采用了关系模型来组织数据的数据库。关系模型是在1970年由IBM的研究员E.F.Codd博士首先提出,在之后的几十年中,关系模型的概念得到了充分的发展并逐渐成为数据库架构的主流模型。简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。下面列出了关系模型中的常用概念。关系:可以理解为一张二维表,每个关系都具有一个关系名,就是通常说的表名。元组:可以理解为二维表中的一行,在数据库中经常被称为记录。属性:可以理解为二维表中的一列,在数据库中经常被称为字段。域:属性的取值范围,也就是数据库中某一列的取值限制。关键字:一组可以唯一标识元组的属性。数据库中常称为主键,由一个或多个列组成。关系模式:指对关系的描述,其格式为:关系名(属性1,属性2,…,属性N)。在数据库中通常称为表结构。关系型数据库的优点关系型数据库相比其他模型的数据库而言,有着以下优点:容易理解:二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。使用方便:通用的SQL语言使得操作关系型数据库非常方便,程序员甚至于数据管理员可以方便地在逻辑层面操作数据库,而完亩辩全不必理解其底层实现。易于维护:丰富的完整性(实体完整性、参照完整性和用户定义的完整性)大大降低了数据冗余和数据不一致的概率。近几年来,非关系型数据库在理论上得到了飞快的发展,例如:网状模型、对象模型、半结构化模型等。网状模型拥有性能较高的优点,通常应用在对性能要求较高的系统中;对象模型符合面向对象应用程序的卖猛思想,可以完美地和程序衔接,而不需要另外的中间转换组件,例如现在很多的O\RMapping组件;半结构化模型随着XML的发展而得到发展,现在已经有了很多半结构化的数据库模型。但是,凭借其理论的成熟、使用的便捷以及现有应用的广泛,关系型数据库仍然是系统应用中的主流方案。

Ⅹ 数据库一体机与大数据技术区别何在

数据库一体机与大数据技术区别何在
作为近期信息管理领域最为热门的两项技术,数据库一体机与大数据技术的硬件架构基本相同,但软件体系有着本质的区别,这也导致了两者拥有不同的特征表现。
随着企业数据量的快速增长,以及用户对服务水平要求的不断提高,相当长的一段时间以来,传统关系数据库技术在生产实践中表现出明显的能力不足。如何以合理的成本获得海量数据的高可用性已经成为现代IT领域的重大挑战。为了应对这一挑战,近年来,IT市场中相继出现了许多新的技术手段,其中最为引人注目的便是由主流数据库厂商主导的数据库一体机(例如Oracle ExaData以及IBM Netezza等),以及以开源力量为主的大数据技术。
不过,虽然数据库一体机与大数据技术都是当今的热门话题,并都已经被广泛应用,但却有相当一部分用户仍然无法深入了解两者之间的本质区别与关系。同时,很多用户也在为如何在企业内部对这两者进行正确定位而感到困惑。为此,本文特别对数据库一体机(也可称新一代主流关系型数据库)和大数据技术(例如Hadoop,主要指MapRece与NoSQL)的相关技术特点进行对比。
硬件与软件
从本质上来讲,数据库一体机与大数据技术的硬件架构基本相同,同样是采用x86服务器集群的分布式并行模式,以应对大规模的数据与计算。但是,数据库一体机的卖家们通常会对其产品的硬件体系进行面向产品化的、系统性的整体调优,同时也会有各自的特色手段。比方说Oracle ExaData的Infiniband、Flash Cache,IBM Nettezza的FPGA(现场可编程逻辑门阵)等。[page] 数据库一体机与大数据技术最为核心的区别是在软件体系上。数据库一体机的核心是SQL体系,这不只是指SQL解析,更重要的是指包括SQL优化引擎、索引、锁、事务、日志、安全以及管理等在内的完整而庞大的技术体系。这一体系是成熟的、面向产品的。
大数据技术软件体系中的MapRece则提供了一个面向海量数据处理的分布式编程框架,使用者需要自行编制所需要的计算逻辑。MapRece对数据的读写是批量连续的,而不是随机的。而大数据技术的另一体系NoSQL则大都只是提供了海量数据的分布式存储,以及基于索引的快速读取机制,为使用者提供的大多是编程API(虽然也有类SQL的语言,但其本质并不是完整的SQL体系)。
由于SQL体系的复杂性与处理逻辑的整体关联性,导致数据库一体机在扩展性上远不及大数据技术体系,虽然前者已经在很大程度上改善了传统关系数据库垂直扩展的瓶颈。MapRece与NoSQL的单个集群往往可以扩展到数千个节点,而数据库一体机如果在硬件上扩展到这个规模,从软件上来讲,已经是没有意义的了。
特征与本质
基于软件体系的不同,导致了数据库一体机和大数据技术有着不同的特征表现。数据库一体机往往适合于存储关系复杂的数据模型(例如企业核心业务数据),并且需要限制为基于二维表的关系模型。同时,数据库一体机适合进行一致性与事务性要求高的计算,以及复杂的BI计算。
大数据技术则更适合于存储较简单的数据模型,并且可以不受模式的约束。因而其可存储管理的数据类型更加丰富。大数据技术还适合进行一致性与事务性要求不高的计算(主要是指NoSQL的查询操作),以及对超大规模海量数据的、批量的分布式并行计算(基于MapRece)。
需要注意的是,NoSQL数据库由于摆脱了繁琐的SQL体系约束,其查询与插入的效率比数据库一体机更高。大数据技术比数据库一体机所能处理的数据量也相对大些,这主要是因为其集群可以扩展得更大。
从本质上讲,MapRece是对海量数据分布式计算领域的一个重要创新,但也只是在适合于并行处理的大规模批量处理问题上更占优势,而对一些复杂操作,则不一定具有优势。NoSQL则可以看作是对传统关系数据库进行简化的结果。由于NoSQL数据库的设计思想只是提取出关系型数据库的索引机制,并加了上分布式存储,把SQL体系中那些对“某些特殊问题”而言并不需要的东西统统删去,由此实现了更优秀的效率、扩展性与灵活性。[page] 因此,我们可以明显地看到,在实践中,有很多问题(特别是流行的大数据问题),关系数据库中的许多设计并不需要,这才是NoSQL发展壮大的根本立足点。
关系与协作
通过前面的分析,我们不难得出这样的结论:大数据技术与数据库一体机应该是相辅相成,并非互相替代的。它们针对不同的应用场景设计,并相互补充与合作。具体来说,大数据技术可以实现:
■处理企业内海量的、模型简单、类型多样的非结构化与半结构化数据(例如社会化数据、各种日志甚至图片、视频等),其处理结果可以被直接使用;
■以上处理结果也同时可以被当成是新的输入存储到企业级数据仓库中,这时大数据机相当于是面向大数据源的、新的ETL(提取-转换-加载)手段;
■面向海量数据的、不太适合SQL的存储或计算。
而数据库一体机则应该还是作为企业数据仓库的主流技术,至少在很长一段时间内应该是这样。它负责存储与计算最主要的、有重大价值的企业关键业务数据。
现存的误区
有些人认为,虽然大数据技术的原始开源状态还不适合充当企业级数据仓库主平台的要求,但经过开发、补充,应该是可以的。其实这个观点没有错。但实际上,对开源的大数据技术进行补充开发,所要补充的正是大数据技术在原始设计上就去除了的、那些本属于关系型数据库体系的东西。
如果进行这样的补充开发,企业不仅会面临庞大的、难于估计的开发工作量,同时也难以像专业数据库厂商那样实现这些工作的理论化、产品化与体系化。虽然从纯技术的角度上讲,开发什么都有可能。但是如果企业真的准备这样做,是要开发另一个商业化的关系数据库吗?很明显,这违背了大数据技术的设计初衷。

热点内容
求阶乘的c语言 发布:2025-05-19 21:15:20 浏览:964
话唠安卓哪里下载 发布:2025-05-19 20:27:04 浏览:166
疯狂android讲义光盘 发布:2025-05-19 20:12:31 浏览:153
安卓手机怎么下载圈点 发布:2025-05-19 20:08:11 浏览:473
文件夹粉碎不了 发布:2025-05-19 20:05:41 浏览:249
安卓怎么把软件放进全局 发布:2025-05-19 20:03:55 浏览:689
安卓手机如何看最真实的型号 发布:2025-05-19 19:58:59 浏览:12
U盘超级加密2008 发布:2025-05-19 19:44:32 浏览:457
灯带编程软件 发布:2025-05-19 19:32:30 浏览:288
如何判断服务器被多少人访问 发布:2025-05-19 19:27:45 浏览:126