当前位置:首页 » 操作系统 » 磁盘数据库

磁盘数据库

发布时间: 2023-04-07 03:06:11

A. 数据库在磁盘上的文件组织分几种类型其中那个是必需的

3种
一个数据库中必须有至少一个主文件和日志文件。但是主文件只能有一个,日志问及可以有多个。还有一种文件就是辅助文件,后缀名是.ldf。主要存储数据库的一些辅助信息。

B. 什么操作是把已经存在磁盘的数据文件恢复到数据库管理系统

附加数据库操作是把已经存在磁盘的数镇芦据文件恢复到数据库管理系统。根据查询相关信息显示,附加数据库就是将一个备份磁盘中的数据库文件(.MDF)和对应的日志文件(.LDF)拷贝到需要的计算机,并枯庆将其添加到某个sqlServer数据库服务御败带器中。

C. 一个例子说明内存数据库为什么比磁盘数据库要快

假定在程序效率和关键过程相当且不计入缓存等措施的条件下,读写任何类型的数据都没有直接操作文件来的快,不论MSYQL过程如何,最后都要到磁盘上去读这个“文件”(记录存储区等效),所以当然这一切的前提是只读 内容,无关任何排序或查找操作。

动态网站一般都是用数据库来存储信息,如果信息的及时性要求不高 可以加入缓存来减少频繁读写数据库。

两种方式一般都支持,但是绕过操作系统直接操作磁盘的性能较高,而且安全性也较高,数据库系中的磁盘性能一直都是瓶颈,大型数据库一般基于unix
系统,当然win下也有,不常用应为win的不可靠性,unix下,用的是裸设备raw设备,就是没有加工过的设备(unix下的磁盘分区属于特殊设备,
以文件形式统一管理),由dbms直接管理,不通过操作系统,效率很高,可靠性也高,因为磁盘,cache和内存都是自己管理的,大型数据库系统
db2,oracal,informix(不太流行了),mssql算不上大型数据库系统。

1、直接读文件相比数据库查询效率更胜一筹,而且文中还没算上连接和断开的时间。

2、一次读取的内容越大,直接读文件的优势会越明
显(读文件时间都是小幅增长,这跟文件存储的连续性和簇大小等有关系),这个结果恰恰跟书生预料的相反,说明MYSQL对更大文件读取可能又附加了某些操
作(两次时间增长了近30%),如果只是单纯的赋值转换应该是差异偏小才对。

3、写文件和INSERT几乎不用测试就可以推测出,数据库效率只会更差。
4、很小的配置文件如果不需要使用到数据库特性,更加适合放到独立文件里存取,无需单独创建数据表或记录,很大的文件比如图片、音乐等采用文件存储更为方便,只把路径或缩略图等索引信息放到数据库里更合理一些。

5、PHP上如果只是读文件,file_get_contents比fopen、fclose更有效率,不包括判断存在这个函数时间会少3秒左右。
6、fetch_row和fetch_object应该是从fetch_array转换而来的,书生没看过PHP的源码,单从执行上就可以说明fetch_array效率更高,这跟网上的说法似乎相反。

磁盘读写与数据库的关系:

一 磁盘物理结构
(1) 盘片:硬盘的盘体由多个盘片叠在一起构销肢纤成。

在硬盘出厂时,由硬盘生产商完成了低级格式化(物理格式化),作用是将空白的盘片(Platter)划分为一个个同圆心、不同半径的磁道
(Track),还将磁道划分为若干个扇区(Sector),每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息,默认每个扇区的大小为
512字节。通常使用者无需再进行低级格式化操作。

(2) 磁头:每张盘片的正反两面各有一个磁头。

(3) 主轴:所有磁片都由主轴电机带动旋转。

(4) 控制集成电路板:复杂!上面还有ROM(内有软件系统)、Cache等。

二 磁盘如何完成单次IO操作
(1) 寻道
当控制器对磁盘发出一个IO操作命令的时候,磁盘的驱动臂(Actuator
Arm)带动磁头(Head)离开着陆区(Landing
Zone,位亏仿于内圈没有饥嫌数据的区域),移动到要操作的初始数据块所在的磁道(Track)的正上方,这个过程被称为寻道(Seeking),对应消耗的时
间被称为寻道时间(Seek Time);

(2) 旋转延迟
找到对应磁道还不能马上读取数据,这时候磁头要等到磁盘盘片(Platter)旋转到初始数据块所在的扇区(Sector)落在读写磁头正下方之后才能开始读取数据,在这个等待盘片旋转到可操作扇区的过程中消耗的时间称为旋转延时(Rotational Delay);

(3) 数据传送
接下来就随着盘片的旋转,磁头不断的读/写相应的数据块,直到完成这次IO所需要操作的全部数据,这个过程称为数据传送(Data Transfer),对应的时间称为传送时间(Transfer Time)。完成这三个步骤之后单次IO操作也就完成了。

根据磁盘单次IO操作的过程,可以发现:
单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间

进而推算IOPS(IO per second)的公式为:
IOPS = 1000ms/单次IO时间

三 磁盘IOPS计算
不同磁盘,它的寻道时间,旋转延迟,数据传送所需的时间各是多少?

1. 寻道时间
考虑到被读写的数据可能在磁盘的任意一个磁道,既有可能在磁盘的最内圈(寻道时间最短),也可能在磁盘的最外圈(寻道时间最长),所以在计算中我们只考虑平均寻道时间。

在购买磁盘时,该参数都有标明,目前的SATA/SAS磁盘,按转速不同,寻道时间不同,不过通常都在10ms以下:

3. 传送时间2. 旋转延时

和寻道一样,当磁头定位到磁道之后有可能正好在要读写扇区之上,这时候是不需要额外的延时就可以立刻读写到数据,但是最坏的情况确实要磁盘旋转整整
一圈之后磁头才能读取到数据,所以这里也考虑的是平均旋转延时,对于15000rpm的磁盘就是(60s/15000)*(1/2) = 2ms。

(1) 磁盘传输速率
磁盘传输速率分两种:内部传输速率(Internal Transfer Rate),外部传输速率(External Transfer Rate)。

内部传输速率(Internal Transfer Rate),是指磁头与硬盘缓存之间的数据传输速率,简单的说就是硬盘磁头将数据从盘片上读取出来,然后存储在缓存内的速度。

理想的内部传输速率不存在寻道,旋转延时,就一直在同一个磁道上读数据并传到缓存,显然这是不可能的,因为单个磁道的存储空间是有限的;

实际的内部传输速率包含了寻道和旋转延时,目前家用磁盘,稳定的内部传输速率一般在30MB/s到45MB/s之间(服务器磁盘,应该会更高)。

外部传输速率(External Transfer Rate),是指硬盘缓存和系统总线之间的数据传输速率,也就是计算机通过硬盘接口从缓存中将数据读出交给相应的硬盘控制器的速率。

硬盘厂商在硬盘参数中,通常也会给出一个最大传输速率,比如现在SATA3.0的6Gbit/s,换算一下就是6*1024/8,768MB/s,通常指的是硬盘接口对外的最大传输速率,当然实际使用中是达不到这个值的。

这里计算IOPS,保守选择实际内部传输速率,以40M/s为例。

(2) 单次IO操作的大小
有了传送速率,还要知道单次IO操作的大小(IO Chunk Size),才可以算出单次IO的传送时间。那么磁盘单次IO的大小是多少?答案是:不确定。

操作系统为了提高 IO的性能而引入了文件系统缓存(File System Cache),系统会根据请求数据的情况将多个来自IO的请求先放在缓存里面,然后再一次性的提交给磁盘,也就是说对于数据库发出的多个8K数据块的读操作有可能放在一个磁盘读IO里就处理了。

还有,有些存储系统也是提供了缓存(Cache),接收到操作系统的IO请求之后也是会将多个操作系统的 IO请求合并成一个来处理。

不管是操作系统层面的缓存还是磁盘控制器层面的缓存,目的都只有一个,提高数据读写的效率。因此每次单独的IO操作大小都是不一样的,它主要取决于系统对于数据读写效率的判断。这里以SQL Server数据库的数据页大小为例:8K。

(3) 传送时间
传送时间 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 0.2ms

可以发现:
(3.1) 如果IO Chunk Size大的话,传送时间会变大,从而导致IOPS变小;
(3.2) 机械磁盘的主要读写成本,都花在了寻址时间上,即:寻道时间 + 旋转延迟,也就是磁盘臂的摆动,和磁盘的旋转延迟。
(3.3) 如果粗略的计算IOPS,可以忽略传送时间,1000ms/(寻道时间 + 旋转延迟)即可。

4. IOPS计算示例
以15000rpm为例:

(1) 单次IO时间
单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间 = 3ms + 2ms + 0.2 ms = 5.2 ms

(2) IOPS
IOPS = 1000ms/单次IO时间 = 1000ms/5.2ms = 192 (次)
这里计算的是单块磁盘的随机访问IOPS。

考虑一种极端的情况,如果磁盘全部为顺序访问,那么就可以忽略:寻道时间 + 旋转延迟 的时长,IOPS的计算公式就变为:IOPS = 1000ms/传送时间
IOPS = 1000ms/传送时间= 1000ms/0.2ms = 5000 (次)

显然这种极端的情况太过理想,毕竟每个磁道的空间是有限的,寻道时间 + 旋转延迟 时长确实可以减少,不过是无法完全避免的。

四 数据库中的磁盘读写
1. 随机访问和连续访问
(1) 随机访问(Random Access)
指的是本次IO所给出的扇区地址和上次IO给出扇区地址相差比较大,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。

(2) 连续访问(Sequential Access)
相反的,如果当次IO给出的扇区地址与上次IO结束的扇区地址一致或者是接近的话,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。

(3) 以SQL Server数据库为例
数据文件,SQL Server统一区上的对象,是以extent(8*8k)为单位进行空间分配的,数据存放是很随机的,哪个数据页有空间,就写在哪里,除非通过文件组给每个表预分配足够大的、单独使用的文件,否则不能保证数据的连续性,通常为随机访问。
另外哪怕聚集索引表,也只是逻辑上的连续,并不是物理上。

日志文件,由于有VLF的存在,日志的读写理论上为连续访问,但如果日志文件设置为自动增长,且增量不大,VLF就会很多很小,那么就也并不是严格的连续访问了。

2. 顺序IO和并发IO
(1) 顺序IO模式(Queue Mode)
磁盘控制器可能会一次对磁盘组发出一连串的IO命令,如果磁盘组一次只能执行一个IO命令,称为顺序IO;

(2) 并发IO模式(Burst Mode)
当磁盘组能同时执行多个IO命令时,称为并发IO。并发IO只能发生在由多个磁盘组成的磁盘组上,单块磁盘只能一次处理一个IO命令。

(3) 以SQL Server数据库为例
有的时候,尽管磁盘的IOPS(Disk Transfers/sec)还没有太大,但是发现数据库出现IO等待,为什么?通常是因为有了磁盘请求队列,有过多的IO请求堆积。

磁盘的请求队列和繁忙程度,通过以下性能计数器查看:
LogicalDisk/Avg.Disk Queue Length
LogicalDisk/Current Disk Queue Length
LogicalDisk/%Disk Time

这种情况下,可以做的是:
(1) 简化业务逻辑,减少IO请求数;
(2) 同一个实例下,多个数据库迁移的不同实例下;
(3) 同一个数据库的日志,数据文件分离到不同的存储单元;
(4) 借助HA策略,做读写操作的分离。

3. IOPS和吞吐量(throughput)
(1) IOPS
IOPS即每秒进行读写(I/O)操作的次数。在计算传送时间时,有提到,如果IO Chunk Size大的话,那么IOPS会变小,假设以100M为单位读写数据,那么IOPS就会很小。

(2) 吞吐量(throughput)
吞吐量指每秒可以读写的字节数。同样假设以100M为单位读写数据,尽管IOPS很小,但是每秒读写了N*100M的数据,吞吐量并不小。

(3) 以SQL Server数据库为例
对于OLTP的系统,经常读写小块数据,多为随机访问,用IOPS来衡量读写性能;
对于数据仓库,日志文件,经常读写大块数据,多为顺序访问,用吞吐量来衡量读写性能。

磁盘当前的IOPS,通过以下性能计数器查看:
LogicalDisk/Disk Transfers/sec
LogicalDisk/Disk Reads/sec
LogicalDisk/Disk Writes/sec

磁盘当前的吞吐量,通过以下性能计数器查看:
LogicalDisk/Disk Bytes/sec
LogicalDisk/Disk Read Bytes/sec
LogicalDisk/Disk Write Bytes/sec

D. mysql数据库磁盘阵列使用情况查询不到

mysql数据库磁盘阵列使用情况查询不到有以下四个原因导致的:
1、数据库用户没有足够的权限:查询磁盘阵列的使用情况需要足够的权限,如果当前的数据库用户没有相应的权限,就无法查询到相关信息。
2、磁盘阵列没有正确配置:如果磁盘阵列没有正旅饥确配置,可能会导致无厅派法查询到相关信息。
3、数据库版本不支持:如果当前的MySQL数据库版本不支持查询磁盘阵列的使用情况,也会导致无法查询到相关信拆伏返息。
4、查询语句错误:如果查询语句中存在错误,也会导致无法查询到相关信息。

E. 磁盘的I/O对数据库性能影响有多大呢

具体问题具体分析,举例来说明为什么磁盘IO成瓶颈数据库的性能急速下降了。

为什么当磁盘IO成瓶祥樱颈之后, 数据库的性能不是达到饱和的平衡状态,而是急剧下降。为什么数据库的性能有非常明显的分界点,原因是什么?

相信大部分做数据库运维的朋友,都遇到这种情况。 数据库在前一天性能表现的相当稳定,数据库的响应时间也很正常,但就在今天,在业务人员反馈业务流量没有任何上升的情况下,数据库的变得不稳定了,有时候一个最简单的insert操作, 需要几十秒,但99%的insert却又可以在几毫秒完成,这又是为什么了?

dba此时心中有无限的疑惑,到底是什么原因呢? 磁盘IO性能变差了?还是业务运维人员反馈的流量压根就不对? 还是数据库内部出问题?昨天不是还好好的吗?

当数据库出现响应时间不稳定的时候,我们在操作系统上会看到磁盘的利用率会比较高,如果观察仔细一点,还可以看到,存在一些读的IO. 数据库服务器如果存在大量的写IO,性能一般都是正常跟稳定的,但只要存在少量的读IO,则性能开始出现抖动,存在大量的读IO时(排除配备非常高速磁盘的机器),对于在线交易的数据库系统来说,大概性能就雪崩了。为什么操作系统上看到的磁盘读IO跟写IO所带来的性能差距这么大呢?

如果亲之前没有注意到上述的现象,亲对上述的结论也是怀疑。但请看下面的分解。

在写这个文章之前,作者阅读了大量跟的IO相关的代码,如异步IO线程的相关的,innodb_buffer池相关的,以及跟读数据块最相关的核心函数buf_page_get_gen函数以及其调用的相关子函数。为了将文章写得通俗点,看起来不那么累,因此不再一行一行的将代码解析写出来。

咱们先来提问题。buf_page_get_gen函数的作用是从Buffer bool里面读数据页,可能存在以下几种情况。

提问. 数据页不在buffer bool 里面该怎橡郑么办?

回答:去读文件,将文件中的数据页加载到buffer pool里面。下面是函数buffer_read_page的函数,作用是将物理数据页加载到buffer pool, 图片中显示

buffer_read_page函数栈的顶层是pread64(),调用了操作系统的读函数。


通过解析buf_wait_for_read函数的下层函数,我们知道其实通过首先自旋加锁pin的方式,超过设定的自旋次数之后,进入等待,等待IO完成被唤醒。这样节省不停自旋pin时消耗的cpu,但需要付出被唤起时的开销。

再继续扩展问题: 如果会话线程A 经过物理IO将数据页1001读入buffer之后,他需要修改这个页,而在会话线程A之后的其他的同样需要访问数据页1001的会话线程,即使在数据页1001被入读buffer pool之后,将仍然处于等待中。因为在数据页上读取或者更新的时候,同样需要上锁,这样才能保证数据页并发读取/更新的一致性。

由此可见,当一个高并发的系统,出现了热点数据页需要从磁盘上加载到buffer pool中时,造成的延迟,是难以想象的。因此排在等待热点页队列最后的会话线程最后才得到需要谨如丛的页,响应时间也就越长,这就是造成了一个简单的sql需要执行几十秒的原因。

再回头来看上面的问题,mysql数据库出现性能下降时,可以看到操作系统有读IO。 原因是,在数据库对数据页的更改,是在内存中的,然后通过检查点线程进行异步写盘,这个异步的写操作是不堵塞执行sql的会话线程的。所以,即使看到操作系统上有大量的写IO,数据库的性能也是很平稳的。但当用户线程需要查找的数据页不在buffer pool中时,则会从磁盘上读取,在一个热点数据页不是非常多的情况下,我们设置足够大的innodb_buffer_pool的size, 基本可以缓存所有的数据页,因此一般都不会出现缺页的情况,也就是在操作系统上基本看不到读的IO。 当出现读的IO时,原因时在执行buf_read_page_low函数,从磁盘上读取数据页到buffer pool, 则数据库的性能则开始下降,当出现大量的读IO,数据库的性能会非常差。

F. 开源内存数据库有哪些

问题一:内存数据库主流的有哪些,并给出各自特点! 这里介绍一些大型的市场占有率比较高的内存数据库,也是业界响当当的―SAP HANA、Oracle Exalytics、Orale TimesTen、IBM SolidDB,可以说他们之间没有说是哪个最好,主要还是看使用的场景和具体的需求,各自特点如下:
SAP HANA(High-Performance Analytic Appliance)是 SAP 公司于 2011 年推出的基于 内存计算技术,面向企业分析性应用的产品。左图 的系统架构示意图中可以看出, HANA 产品主要包括内存计算引擎和 HANA 建模工具两部分。它支持从 SAP 商务套件中 同步更新业务数据,或者从 SAP BW(SAP 商务智能产品)和其他第三方数据源中批量导 入数据,在 HANA 中进行运算后,提供给 SAP BI 客户端或者其他第三方展现工具进行分 析和展现。
Oracle Exalytics 内存分析一体机是面向分析的集成设计系统,可以无限制提供最佳可 视化分析和更智能的分析应用程序。 如图 所示, Oracle Exalytics 内存分析一体机的产品架构包括 3 个部分: 内容分析 硬件、内存分析软件和经过优化的 Oracle 商务智能基础套件(Oracle BI Foundation)。内存分析硬件部分是一台为基于内存计算的商务智能而特别优化的服务器,具有提供 强劲计算能力的 40 核中央处理器,高达 1TB 的内存以及快速的网络. 内存分析软件部分的核心是 Oracle TimesTen 内存数据库。它是为 Exalytics 平台而特 别优化的内存分析数据库,包括了很多 Oracle Exalytics 平台特有的功能。Oracle 商务智能基础套件部分受益于 Oracle Exalytics 内存分析一体机的大容量内存、 处理器、并发处理能力、存储、网络、操作系统、内核和系统配置等,可以提供明显优于传统软件的查询响应性、用户可用性和 TCO。
Oracle 内存数据库TimesTen 是一个基于内存计算的关系数据库, 提供了响应时间极 短且吞吐量极高的应用程序,可满足各行业应用程序的需求。 TimesTen 是一个可嵌入到应用程序中的数据库, 通过消除进程间通信和网络 开销,进一步提高数据库操作的性能。Oracle 内 存 数 据 库 TimesTen 使 用 行 级 锁 定 和 提 交 后 读 取 (mitted-read) 隔离,通过事务日志记录与数据库检查点相结合实现了基于磁盘的持久 性和可恢复性。TimesTen 通常与多用户和多线程应用程序一起部署,应用程序直接通过 JDBC、 ODBC、 Oracle 调用接口、 Pro*C/C++ 和Oracle PL/SQL 编程接口, 使用标准SQL 访问TimesTen 数据库。若运行在不同服务器上的多个应用程序共享一个数据库时,则使 用常规的客户端/服务器访问方式。
IBM solidDB 是一个内存数据库,专为获取极高的速度和可用性而进行优化。如图 所示,IBM solidDB 既可以单独部署作为独立的数据库支持应用程序,也可 以部署为其他关系型数据库的加速缓存以提高应用程序性能。solidDB Universal Cache 功能将这些数据库中存储的性能关键型数据 缓存到solidDB Universal Cache 中,加快领先关系数据库的速度。solidDB Universal Cache 功能使用检查点和事务日志将数据持久保存在 磁盘上......>>

问题二:开源的内存数据库都有哪些 1.最简单的方法:
public static String reverse1(String str)
{
return new StringBuffer(str).reverse().toString();
}
2.最常用的方法:
public static String reverse3(String s)
{
char[] array = s.toCharArray();
String reverse = ; 注意这是空串,不是null
for (int i = array.length - 1; i >= 0; i--)
reverse += array[i];
return reverse;
}

问题三:开源内存数据库有几种啊? 常见的有FastDB、SQLite、Berkeley DB、GigaBASE,H2等

问题四:几种常用的开源内存数据库性能比较 本人理解:orcal速度快但是维护不方便吗,费钱。mysql速度可以,维护方便,交orcal来说易上手。db2:大

问题五:开源的内存数据库有哪些支持SQL基准 选择数据库实例―右键属性―选择【内存】选择页―修改内存―确定

问题六:C/C++开发的开源的分布式内存数据库有哪些 1.最简单的方法:
public static String reverse1(String str)
{
return new StringBuffer(str).reverse().toString();
}
2.最常用的方法:
public static String reverse3(String s)
{
char[] array = s.toCharArray();
String reverse = ; 注意这是空串,不是null
for (int i = array.length - 1; i >= 0; i--)
reverse += array[i];
return reverse;
}

问题七:哪位达人用过关系型的内存数据库而且是开源的 关系型数据库以行和列的形式存储数据,以便于用户理解。这一系列的行和列被称为表,一组表组成了数据库。表与表之间的数据记录有关系。用户用查询(Query)来检索数据库中的数据。一个Query是一个用于指定数据库中行和列的SELECT语句。关系型数据库通常包含下列组件: 客户端应用程序(Client) 数据库服务器(Server) Structured Query Language(SQL)Client端和Server端的桥梁,Client用SQL来向Server端发送请求,Server返回Client端要求的结果。现在流行的大型关系型数据库有IBM DB2、Oracle、SQL Server、SyBase、Informix、access、foxpro等。

问题八:C/C++开发的开源的分布式内存数据库有哪些 1.最简单的方法:public static String reverse1(String str){ return new StringBuffer(str).reverse().toString();}2.最常用的方法:public static String reverse3(String s) { char[] array = s.toCharArray(); String reverse = ; 注意这是空串,不是null for (int i = array.length - 1; i >= 0; i--) reverse += array[i]; return reverse; } 3.常用方法的变形: public static String reverse2(String s){ int length = s.length(); String reverse = ; 注意这是空串,不是null for (int i = 0; i 问题九:要求实时数据需要存储到内存库 有开源内存数据库吗 朋友您好,很高兴为您解答问题
请把问题补充完整
大家才能给你提供完善的建议
相信您在知道这个平台
一定会有满意的收获
真诚希望能够帮助您,如果满意请采纳,祝您好运常伴。

问题十:什么情况下用内存数据库 相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘 *** 问能够极大地提高应用的性能。同时,内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行操作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多,一般都在10倍以上。内存数据库的最大特点是其主拷贝或工作版本 常驻内存,即活动事务只与实时内存数据库的内存拷贝打交道。显然,它要求较大的内存量,但并非任何时刻整个数据库都存放在内存,即内存数据库系统还是要处理I/O。
内存数据库是以牺牲内存资源为代价换取数据处理实时性的,内存数据库和磁盘数据库都是当今信息社会里每个企业所必须的关系型数据库产品,磁盘数据库解决的是大容量存储和数据分析问题,而内存数据库解决的是实时处理和高并发问题。两者的存在是相辅相成的,内存数据库的事务实时处理性能要远强于磁盘数据库。但是相对的,他的数据安全方面还没有达到磁盘数据库比肩的地步。
内存数据库将物理内存作为数据的第一存储介质,而将磁盘作为备份。随着电信业务的发展,系统对实时性的要求和对业务灵活修改的要求非常高,在此种情况下对于内存数据库的需求也越来越高。磁盘数据库的做法是将数据存入内存中进行处理,这种方式的可管理性及数据安全可靠性都没有保障。而内存数据库正是针对这一弱点进行了改进。
实际上,内存数据库并不是一项时髦技术,其出现于上世纪60年代末,但由于市场的需求原因在90年代后期才开始发展。作为新一代数据库,Altibase产品已经走向混合型数据库,其版本Altibase 4.0已经有一套自带的磁盘数据库,用户一旦购买了Altibase的内存数据库,就无须再购买磁盘数据库。它把热数据(经常被使用的、访问比较高的、经常要运算的数据)放在内存数据库里,而把历史性数据放在磁盘数据库里,可为用户进一步减少投资。
对于内存数据库而言,可以将同样数据库的部分内容存放于磁盘上,而另一部分存放于内存中。用户可以选择将数据存储在内存表中以提供即时的数据访问。若访问时间不紧急或数据存于内存中所占空间过大时,用户可将这些数据存入磁盘表中。
比如,在手机用户开始拔打电话时,如果应用基于内存数据库技术的混合数据管理引擎,就通过内存表检索其服务选项并立即验证用户身份,而将通话清单和计费清单归档到磁盘表中。从而,达到了速度与资源使用的平衡。
内存数据库的技术,一个很重要的特点,是可以对内存中的数据实现全事务处理,这是仅仅把数据以数组等形式放在内存中完全不同的。并且,内存数据库是与应用无关的,显然这种体系结构具有其合理性。内存引擎可以实现查询与存档功能使用的是完全相同的数据库,同时内存表与磁盘表也使用的是完全相同的存取方法。存储的选择,对于应用开发者而言是完全透明的。
对于内存数据库而言,实现了数据在内存中的管理,而不仅仅是作为数据库的缓存。不像其它将磁盘数据块缓存到主存中的数据库,内存数据库的内存引擎使用了为随机访问内存而特别设计的数据结构和算法,这种设计使其避免了因使用排序命令而经常破坏缓存数据库性能的问题。通过内存数据库,减少了磁盘I/O,能够达到了以磁盘I/O 为主的传统数据库无法与其相比拟的处理速度。
因此,内存数据库技术的应用,可以大大提高数据库的速度,这对于需要高速反应的数据库应用,如电信、金融等提供了有力支撑。
由于把大多数数据都放在内存中进行操作,使得内存数据库有着比磁盘数据库高得多的性能表现,这一......>>

G. 数据库在磁盘上的基本组织形式是

数据库在磁盘上的基本组织形式是岁陪绝文件。
数据库分组架构是每个数据库都以文件的形式存放在磁盘乱孙上,即对应于一个物理文件。不同的数据库,与物理文件对应的方式也不一样。
对于dBASE,FoxPro和Paradox格式的数据库来说,一个数据表就是一个单独的数据库文件,而对于MicrosoftAccess、Btrieve格式的数据库来说,一个数据乎姿库文件可以含有多个数据表。

H. 数据库的磁盘文件作用是什么

每个 SQL Server 2005 数据库至少具有两个操作系统文件:一个数据文件和一个日志文件。 数据文件包含数据和对象,如表、索引、存储过程和视图。 日志文件包含恢搜慎复数据库中的所有事务所需的信息。 根据这些文件的作用不同,可以将它们划分为以下3种。 主数据库文件(primary database file):主数据库文件用来存储数据库的启动信息和部分或全部数据,并举肆指向数据库中的其他文件。 用户数据和对象可存储在此文件中,也可以储存在辅助数据库文件中。 每个数据库必须有且只有正漏轿一个主数据库文件。

I. float保存在磁盘好还是数据库好

float保存在数据库好,只要做好备份就行。
放在数据库中的好处是查询,管理方便些,一些SQL语句就搞定了,比较方便。。
放在磁盘中和放在数据库中都是安全的。
数据库中的文件理论上来说会比直接放在磁盘中访问慢些,但在做好索引的情况下,速度上差异不大float保存在数据库好,只要做好备份就行。放在数据库中的好处是查询,管理方便些,一些SQL语句就搞定了,比较方便。float类型的数据既可以保存在磁盘,也可以保存在数据库中。磁盘文件存储float类型的数据可以避免安全纤笑漏洞,并且更容易备份和恢复,传输速度快,性能好,可以有效地节省内存。但是,将float类型的数据存储在数据库中具有较高的可用性和安全性,可以方便的查询、更新、删除数据,可以更好的控制和管理数据,特别是在多用户环境下,数据库可以更好地控制和管理大量数据。磁盘好,选择是在磁盘还是数据库中存储浮点数取决于许多因素,包括特定用例、数据集的大小以及对性能和可靠性的要求。
如果您的数据集相对较小,则将浮点数存储在磁盘文件中可能历岁就足够了。磁盘文件易于使用,并允许快速读取和写入数据。
但是,如果您有一个大型或复杂的数据集,数据库可能是更好的选择。数据库提供更强大的数据管理功能,包括高效索引、查询和更新数据的能力。它们还为事务提供内置支持,这有助于确保在遇到故障或错误时的数据完整性。
最终,磁盘文件和数据库之间的选择将取决于您的使用案例的特定要求,您可能需要考虑各种因素,例如性能、可扩展性、可靠性和易用性,以便做出明智的决定。具体而言,float类型的数据是否保存在磁盘或数据库取决于具体使用场景,通常,如果要求对数据进行长期储存,建议将浮点类型数据保存毁烂含在磁盘中;如果要求频繁的读写操作,建议将浮点类型数据保存在数据库中,以提高效率。

J. 系统磁盘快满了又要实时读取数据库数据怎么办

如果系统磁册冲盘快满了,可能会影响系统性能。我们可以采取以下措施来解决这个问携枝题:

1. 删除不需要的文件或程序以释放磁盘空间。可以使用磁州隐歼盘清理工具或手动删除文件。

2. 移动一些较大的文件到外部存储设备上。例如,将照片、视频等移动到 USB 或外置硬盘。

3. 优化数据库,减少其大小。可以采用数据压缩、分区等方法。

4. 使用云存储技术,将数据存储在云端,减少本地磁盘占用。

5. 增加磁盘空间,可以考虑更换更大容量的硬盘或扩展磁盘空间。

以上方法都可以帮助缓解系统磁盘快满的问题,同时实时读取数据库数据也不会受到太大影响

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:336
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:945
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:742
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:372