a算法c
A. 求一个A*算法的C语言或C++代码,小弟不胜感激,谢谢
1#include <iostream>
2#include <queue>
3usingnamespace std;
4
5struct knight{
6int x,y,step;
7int g,h,f;
8booloperator< (const knight & k) const{ //重载比较运算符
9return f > k.f;
10 }
11}k;
12bool visited[8][8]; //已访问标记(关闭列表)
13int x1,y1,x2,y2,ans; //起点(x1,y1),终点(x2,y2),最少移动次数ans
14int dirs[8][2]={{-2,-1},{-2,1},{2,-1},{2,1},{-1,-2},{-1,2},{1,-2},{1,2}};//8个移动方向
15priority_queue<knight> que; //最小优先级队列(开启列表)
16
17boolin(const knight & a){ //判断knight是否在棋盘内
18if(a.x<0|| a.y<0|| a.x>=8|| a.y>=8)
19returnfalse;
20returntrue;
21}
22int Heuristic(const knight &a){ //manhattan估价函数
23return (abs(a.x-x2)+abs(a.y-y2))*10;
24}
25void Astar(){ //A*算法
26 knight t,s;
27while(!que.empty()){
28 t=que.top(),que.pop(),visited[t.x][t.y]=true;
29if(t.x==x2 && t.y==y2){
30 ans=t.step;
31break;
32 }
33for(int i=0;i<8;i++){
34 s.x=t.x+dirs[i][0],s.y=t.y+dirs[i][1];
35if(in(s) &&!visited[s.x][s.y]){
36 s.g = t.g +23; //23表示根号5乘以10再取其ceil
37 s.h = Heuristic(s);
38 s.f = s.g + s.h;
39 s.step = t.step +1;
40 que.push(s);
41 }
42 }
43 }
44}
45int main(){
46char line[5];
47while(gets(line)){
48 x1=line[0]-'a',y1=line[1]-'1',x2=line[3]-'a',y2=line[4]-'1';
49 memset(visited,false,sizeof(visited));
50 k.x=x1,k.y=y1,k.g=k.step=0,k.h=Heuristic(k),k.f=k.g+k.h;
51while(!que.empty()) que.pop();
52 que.push(k);
53 Astar();
54 printf("To get from %c%c to %c%c takes %d knight moves.\n",line[0],line[1],line[3],line[4],ans);
55 }
56return0;
57}
58
B. 排列组合A和C都有哪些计算方法
计算方法——
(1)排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
(2)a算法c扩展阅读:
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为自然数。
(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
C. 概率论中C和A的计算方法
C26=6x5/(2x1)
A26=6x5
A的话,上面的2相当于位数,然后从下面的5开始乘,2的话相当于乘两次,即5x4
C的话,就是A的基础上再除以2!,即6x5/(2x1)
D. 数学概率c公式和a公式是什么
1、C的计算公式:
C表示组合方法的数量。
比如:C(3,2),表示从3个物体中选出2个,总共的方法是3种,分别是甲乙、甲丙、乙丙(3个物体是不相同的情况下)。
2、A的计算公式:
A表示排列方法的数量。
比如:n个不同的物体,要取出m个(m<=n)进行排列,方法就是A(n,m)种。
也可以这样想,排列放第一个有n种选择,,第二个有n-1种选择,,第三个有n-2种选择,·····,第m个有n+1-m种选择,所以总共的排列方法是n(n-1)(n-2)···(n+1-m),也等于A(n,m)。
区别:
数学概率a公式(排列):A(右边上标m,下标n)=n!/(n-m)!,c公式(组合):C(右边上标m,下标n)=n!/[m!(n-m)!]。
a公式是排列方法的数量,它与顺序无关,而c公式是组合方法的数量,它与顺序有关。
排列:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。
组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号C(n,m)表示。
E. 排列组合中A和C的算法怎么算的,查了百度都不会,求详细点的谢谢(高中)
排列数 A(n,m) ----------即 字母A右下角n 右上角m,表示n取m的排列数
A(n,m)=n!/(n-m)!=n*(n-1)*(n-2)*……*(n-m+1)
A(n,m)等于从n 开始连续递减的 m 个自然数的积
n取m的排列数 A(n,m) 等于从n 开始连续递减的 m 个自然数的积
例: A(7,3)=7*6*5=210
组合数 C(n,m) ----------即 字母C右下角n 右上角m,表示n取m的排列数
C(n,m)=n!/(m!*(n-m)!)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
C(n,m)等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
n选m的组合数 C(n,m) 等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
例: C(7,3)=7*6*5/(1*2*3)=35
F. 求A* 算法C语言源程序
#include <string.h>
#include <stdio.h>
#include <malloc.h>
#include <time.h>
#define NULL 0
const int nmax = 200;
const int nend = 99; /*终点坐标的代表点*/
static char achar[10][10];
static int npayo = 0; /*0 表示空 1为非空*/
static int npayc = 0; /*0 表示空 1为非空*/
static int npay_x = 0; /*起点*/
static int npay_y = 0;
static int nend_x = 9; /*终点*/
static int nend_y = 9;
static int nnewpay_x;
static int nnewpay_y;
static int ndian = 101;
static int nh;
static long i = 10000000L;
struct Spaydian
{
int ng;
int nf; /*路径评分*/
int nmy_x; /*自己位置*/
int nmy_y;
int nfatherx; /*父节点*/
int nfathery;
int nflag; /* 0 wei O; 1 wei @ */
};
static struct Spaydian spaydian[200];
/* open close list 表 */
typedef struct spaylist
{
int n_f;
int n_x;
int n_y;
int nfather_x;
int nfather_y;
struct spaylist *next;
};
static struct spaylist *open_list, *close_list;
static void smline();
static int sjudge(int nx,int ny,int i); /*判断在第nx列ny行向第i个方向走是否可以,可以返回1否则返回0。
i=1表示向右,2表示向下,3表示向左,4表示向上*/
static void spath();
static void spayshow(int nxx,int nyy);
static int sifopen( int nx,int ny); /*判断点是否在 open 表上*/
static int sifclose(int nx,int ny); /*判断点是否在 close 表上*/
static int snewx(int nx,int i);
static int snewy(int ny,int i);
static spaylist *creat(); /*建立链表*/
static spaylist *del(spaylist *head,int num_x,int num_y); /*删除链表的结点*/
static spaylist *snewdianx(spaylist *head);/*新的点*/
static spaylist *snewdiany(spaylist *head);
static spaylist *insert(spaylist *head,int ndian); /* 点插入链表 */
static spaylist *srebirth(spaylist *head,int ndian); /*更新表*/
int main()
{
FILE *fp ;
char ach ;
int ni = 0 ; /*统计个数*/
int nii = 0; /*achar[nii][njj]*/
int njj = 0;
if ((fp=fopen("route.txt","rt")) == NULL) /* 判断打开文件是否为空 */
{
printf("文件为空!~\n");
return 0;
/* exit(1);*/
}
ach = fgetc(fp);
while(ach != EOF)
{
if(ach == 'O' || ach == '@') /*当值为@或O时候*/
{
spaydian[ni].ng = 0;
spaydian[ni].nf = nmax;
spaydian[ni].nmy_x = njj;
spaydian[ni].nmy_y = nii;
spaydian[ni].nfathery = -1;
spaydian[ni].nfatherx = -1;
if(ach == '@')
{
spaydian[ni].nflag = 1;
}
else if(ach == 'O')
{
spaydian[ni].nflag = 0;
}
ni++;
achar[nii][njj] = ach;
njj++;
if(njj == 10)
{
nii++;
njj = 0;
}
} /*end if*/
ach = fgetc(fp);
}/*end while*/
smline(); /* a*算法 */
fp=fopen("answer.txt","w");
for(int i=0;i<10;i++ )
{ for(int j=0;j<10;j++ )
{
printf("%c",achar[i][j]);
if(j==9)
printf("\n");
fprintf(fp,"%c",achar[i][j]);
if (j==9)
fprintf(fp,"\n");
}
}
fclose(fp);
return 0;
}
/* a* 算法 */
static void smline()
{ close_list = open_list = NULL;
open_list = creat();
while(open_list != NULL) /* 当open 表不为空时 */
{
open_list = del(open_list,npay_x,npay_y); /*删除open 链表的结点*/
if(npay_x == 9 && npay_y == 9)
{
achar[9][9] = '=';
spath(); /*寻找并画出路径*/
break;
}
for (int i=1; i<=4; i++) /*四个方向逐个行走,i=1向右 2向下 3向左 4向上*/
{
if (sjudge(npay_x,npay_y,i))
{
nnewpay_x = snewx(npay_x,i);
nnewpay_y = snewy(npay_y,i);
if(open_list != NULL)
npayo = sifopen(nnewpay_x,nnewpay_y) ; /*判断点是否在 open 表中*/
else
npayo = 0;
if(close_list != NULL)
npayc = sifclose(nnewpay_x,nnewpay_y) ; /*判断点是否在 close 表中*/
else
npayc = 0;
ndian = 10*nnewpay_x+nnewpay_y ;
if (npayo == 0 && npayc == 0 ) /*点不在open表也不在close表中*/
{
spaydian[ndian].ng = spaydian[10*npay_x+npay_y].ng + 1; /*更新点的基本信息*/
nh = (nend - ndian)/10 + (nend - ndian)%10 ;
spaydian[ndian].nf = spaydian[ndian].ng+nh;
spaydian[ndian].nfathery = npay_y;
spaydian[ndian].nfatherx = npay_x;
spaydian[ndian].nmy_y = nnewpay_y;
spaydian[ndian].nmy_x = nnewpay_x;
open_list = insert(open_list,ndian);/*点插入open 表中*/
}
else if (npayo == 1) /*点在open表中*/
{
spaydian[ndian].ng = spaydian[10*npay_x+npay_y].ng + 1;
nh = (nend - ndian)/10 + (nend - ndian)%10 ;
if(spaydian[ndian].nf > (spaydian[ndian].ng+nh) && spaydian[ndian].nf != nmax)
{
spaydian[ndian].nf = spaydian[ndian].ng+nh;
open_list = srebirth(open_list,ndian); /*点插入open 表中*/
}
}
else if(npayc == 1) /*新生成的点在close表中*/
{
spaydian[ndian].ng = spaydian[10*npay_x+npay_y].ng + 1;
nh = (nend - ndian)/10 + (nend - ndian)%10 ;
if(spaydian[ndian].nf > (spaydian[ndian].ng+nh) && spaydian[ndian].nf != nmax)
{
spaydian[ndian].nf = spaydian[ndian].ng+nh;
close_list = srebirth(close_list,ndian);
close_list = del(close_list,nnewpay_x,nnewpay_y); /*删除close链表的结点*/
open_list = insert(open_list,ndian);/*点插入open 表中*/
}
}/*end else if*/
}/*end if*/
}/*end for*/
close_list = insert(close_list,(10*npay_x+npay_y));/*点插入close 表中*/
if(open_list != NULL)
{
npay_x = open_list->n_x;
npay_y = open_list->n_y;
}
}/*end while*/
if(open_list == NULL)
{printf("无路可走 \n");}
}
/*建立链表*/
spaylist *creat(void)
{
spaylist *head;
spaylist *p1;
int n=0;
p1=(spaylist*)malloc(sizeof(spaylist));
p1->n_f = 18;
p1->n_x = 0;
p1->n_y = 0;
p1->nfather_x = -1;
p1->nfather_x = -1;
p1->next = NULL;
head = NULL;
head=p1;
return(head);
}
/*删除结点*/
spaylist *del(spaylist *head,int num_x,int num_y)
{
spaylist *p1, *p2;
if(head == NULL)
{
printf("\nlist null!\n");
return (head);
}
p1 = head;
while((num_y != p1->n_y ||num_x != p1->n_x )&& p1->next != NULL)
{
p2=p1;
p1=p1->next;
}
if(num_x == p1->n_x && num_y == p1->n_y )
{
if(p1==head)
head=p1->next;
else
p2->next=p1->next;
}
return (head);
}
/*输出*/
static void spath()
{
int nxx;
int nyy;
nxx = spaydian[nend].nfatherx;
nyy = spaydian[nend].nfathery;
spayshow(nxx,nyy) ;
}
/*递归*/
void spayshow(int nxx,int nyy)
{ achar[nxx][nyy] = '=';
if( nxx != 0 || nyy != 0 )
{
int nxxyy = 10*nxx+nyy;
nxx = spaydian[nxxyy].nfatherx;
nyy = spaydian[nxxyy].nfathery;
spayshow(nxx,nyy);
}
}
/* 判断周围四个点是否可行 */
static int sjudge(int nx,int ny,int i)
{
if (i==1) /*判断向右可否行走*/
{
if (achar[nx][ny+1]=='O' && ny<9)
{
return 1;
}
else
return 0;
}
else if (i==2) /*判断向下可否行走*/
{
if (achar[nx+1][ny]=='O' && nx<9)
{
return 1;
}
else
return 0;
}
else if (i==3)/*判断向左可否行走 */
{
if (ny > 0&&achar[nx][ny-1]=='O')
{
return 1;
}
else
return 0;
}
else if (i==4)/*判断向上可否行走 */
{
if (nx > 0&&achar[nx-1][ny]=='O')
{
return 1;
}
else
return 0;
}
else
return 0;
}
/* 求新的x点 */
static int snewx(int nx,int i)
{
if(i == 1)
nx = nx;
else if(i == 2)
nx = nx+1;
else if(i == 3)
nx = nx;
else if(i == 4)
nx = nx-1;
return nx;
}
/* 求新的y点 */
static int snewy(int ny, int i)
{
if(i == 1)
ny = ny+1;
else if(i == 2)
ny = ny;
else if(i == 3)
ny = ny-1;
else if(i == 4)
ny = ny;
return ny;
}
/*判定点是否在open表中*/
int sifopen(int nx,int ny)
{
spaylist *p1, *p2;
p1 = open_list;
while((ny != p1->n_y || nx != p1->n_x )&& p1->next != NULL)
{
p2 = p1;
p1 = p1->next;
}
if(nx == p1->n_x && ny == p1->n_y)
return 1;
else
return 0;
}
/*判定点是否在close表中*/
int sifclose(int nx,int ny)
{
spaylist *p1, *p2;
p1 = close_list;
while((ny != p1->n_y ||nx != p1->n_x )&& p1->next != NULL)
{
p2=p1;
p1=p1->next;
}
if(nx == p1->n_x && ny == p1->n_y)
return 1;
else
return 0;
}
/*插入结点*/
spaylist * insert(spaylist *head,int ndian)
{
spaylist *p0,*p1,*p2;
p1=head;
p0=(spaylist*)malloc(sizeof(spaylist));
p0->n_f = spaydian[ndian].nf;
p0->n_x = spaydian[ndian].nmy_x;
p0->n_y = spaydian[ndian].nmy_y;
p0->nfather_x = spaydian[ndian].nfatherx;
p0->nfather_x = spaydian[ndian].nfathery;
p0->next = NULL;
if(head==NULL)
{
head=p0;
p0->next=NULL;
}
else
{
while((p0->n_f > p1->n_f)&&(p1->next!=NULL))
{
p2=p1;
p1=p1->next;
}
if(p0->n_f <= p1->n_f)
{
if(head==p1)
head=p0;
else
p2->next=p0;
p0->next=p1;
}
else
{
p1->next=p0;
p0->next=NULL;
}
}
return (head);
}
/* 更新链表 */
spaylist * srebirth(spaylist *head,int ndian)
{
spaylist *p1, *p2;
p1=head;
while(spaydian[ndian].nmy_x!=p1->n_x&&spaydian[ndian].nmy_x!=p1->n_x&&p1->next!=NULL)
{
p2=p1;
p1=p1->next;
}
if(spaydian[ndian].nmy_x==p1->n_x&&spaydian[ndian].nmy_x==p1->n_x)
{
p1->n_f = spaydian[ndian].nf;
}
return (head);
}