当前位置:首页 » 操作系统 » 算法道德

算法道德

发布时间: 2023-04-18 10:47:22

‘壹’ 算法独裁

想到不远的将来,每个家庭都有一部无人驾驶汽车,你只需要设定一个目的地,就可以悠哉地躺在后座等待人工智能把汽车驾驶到终点。可是别忘了,天有不测风云,算法真的能把所有的变量都事先采集并优先判断吗?如果路丛斗上遇到无法避免的车祸,只能在车主和儿童之间选择一个保护对象,人工智能的算法还能给出让大家都满意的第三个选项吗?如果算法遇到伦理道德难题,那该何者优先?如果一味算法优先,人类运行几千年的社会人伦关系是不是可以退居二线?一个简单的提问细究起来也能让人细思极恐,这就是算法咄咄逼人的发展形式。恐怕这个问题要放在一个更大的前提下讨论才有答案,即人工智能是否将要取代人类作为一种全新的社会存在,颠覆人类传统的社会关系并渗则磨发展出顺应算法独裁时代的新的社会规则…盯此

‘贰’ 算法治理须抓牢主体责任“牛鼻子”

近日,国家网信办等四部门联合发布《互联网信息服务算法推荐管理规定》(以下简称《规定》),引发了 社会 热议和互联网平台企业的积极响应。

《规定》的出台,表明国家有关部门对算法正在经历一个认识上由浅及深、由表及里,管理上从审慎监管到丰富工具库,再逐渐到引航指向的过程。作为部门规章的《规定》,也将与网络安全法、数据安全法、个人信息保护法等重要法律一道构建起新时代大数据和人工智能治理的主体框架。

过去十年来,以算法为核心的智能 科技 极大改变了 社会 生活形态,购物推荐、出行导航等逐渐走入寻常百姓家,人们的生纤稿腔活已被嵌入“算法”之中,甚至相当一部分人产生了“算法依赖”。以算法为核心的智能 科技 也极大提升了政府公共治理效率和水平,特别是在疫情防控中发挥了不可替代的作用。

但与此同时,由于认识、监管滞后,以及信息不对称所带来的“黑箱运算”,导致在一些商业应用场景中,算法以一种极具破坏力的方式近乎野蛮地生长着:算法操纵、诱导沉迷、大数据杀熟等大量存在,不仅冲击正常市场秩序,破坏公平竞争的市场环境,也影响了消费者的知情权、选择权和处置个人信息的权利。

算法作为一种技术规则和运算逻辑,本身是中立的,实践中之所以出现种种乱象,折射出的是算法背后的开发者价值观的偏航。算法偏航带来的结果大致相同:那就是通过不公平、不正当的运算规则锁定和收割利益。因此,算法的“算计”,归根结底是人的算计,是掌握算法的商业平台的算计。尽管有专家称,一些具备自我学习、自我训练能力的算法,出现歧视和偏差在很多情况下难以预料,但从整体来看,算法是有价值观的,其价值观就是开发者和互联网平台的价值观。

因此,算法治理的核心就是牵住互联网平台的主体责任这个“牛鼻子”。如《规定》明确,算法推荐服务提供者应当落实算法安全主体责任,建立健全算法机制机理审核、 科技 伦理审查、用户注册、信息发布审核、数据安全和个人信息保护等管理制度和技术措施。我国个人信息保护法也规定,提供重要互联网平台服务、用户数量巨大、业务类型复杂的个人信息处理者应当承担保护信息安全的主体责任。

压实主体责任是穿透算法迷雾毁衫、引航算法治理的关键之举。国家有关部门近年来对若干互联网平台启动调查,就是在执法层面抓牢、压实主体责任的切实体现。国家层面也越来越清晰地认识到:掌握大数据、云计算、人工智能的互联网平台,其作用是为 社会 发展提供“关键信息基础设施”,而非张牙舞爪的利益收割机。

作为算法的提供者,互联网平台必须着眼长远,服务于国家整体战略,严格遵守法律法规和商业道德,坚持正确导向,切实承担起主体责任,规范算法应用,实现科敬虚学技术与商业伦理、 社会 价值的良性互动,为推动我国经济 社会 高质量发展提供新助力。(张亮)

‘叁’ 互联网信息服务算法推荐管理规定

第一章总 则第一条为了规范互联网信息服务算法推荐活动,弘扬社会主义核心价值观,维护国家安全和社会公共利益,保护公民、法人和其他组织的合法权益,促进互联网信息服务健康有序发展,根据《中华人民共和国网络安全法》、《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》、《互联网信息服务管理办法》等法律、行政法规,制定本规定。第二条在中华人民共和国境内应用算法推荐技术提供互联网信息服务(以下简称算法推荐服务),适用本规定。法律、行政法规另有规定的,依照其规定。

前款所称应用算法推荐技术,是指利用生成合成类、个性化推送类、排序精选类、检索过滤类、调度决策类等算法技术向用户提供信息。第三条国家网信部门负责统筹协调全国算法推荐服务治理和相关监督管理工作。国务院电信、公安、市场监管等有关部门依据各自职责负责算法推荐服务监督管理工作。

地方网信部门负责统筹协调本行政区域内的算法推荐服务治理和相关监督管理工作。地方电信、公安、市场监管等有关部门依据各自职责负责本行政区域内的算法推荐服务监督管理工作。第四条提供算法推荐服务,应当遵守法律法规,尊重社会公德和伦理,遵守商业道德和职业道德,遵循公正公平、公开透明、科学合理和诚实信用的原则。第五条鼓励相关行业组织加强行业自律,建立健全行业标准、行业准则和自律管理制度,督促指导算法推荐服务提供者制定完善服务规范、依法提供服务并接受社会监督。第二章信息服务规范第六条算法推荐服务提供者应当坚持主流价值导向,优化算法推荐服务机制,积极传播正能量,促进算法应用向上向善。

算法推荐服务提供者不得利用算法推荐服务从事危害国家安全和社会公共利益、扰乱经济秩序和社会秩序、侵犯他人合法权益等法律、行政法规禁止的活动,不得利用算法推荐服务传播法律、行政法规禁止的信息,应当采取措施防范和抵制传播不良信息。第七条算法推荐服务提供者应当落实算法安全主体责任,建立健全算法机制机理审核、科技伦理审查、用户注册、信息发布审核、数据安全和个人信息保护、反电信网络诈骗、安全评估监测、安全事件应急处置等管理制度和技术措施,制定并公开算法推荐服务相关规则,配备与算法推荐服务规模相适应的专业人员和技术支撑。第八条算法推荐服务提供者应当定期审核、评估、验证算法机制机理、模型、数据和应用结果等,不得设置诱导用户沉迷、过度消费等违反法律法规或者违背伦理道德的算法模型。第九条算法推荐服务提供者应当加强信息安全管理,建立健全用于识别违法和不良信息的特征库,完善入库标准、规则和程序。发现未作显着标识的算法生成合成信息的,应当作出显着标识后,方可继续传输。

发现违法信息的,应当立即停止传输,采取消除等处置措施,防止信息扩散,保存有关记录,并向网信部门和有关部门报告。发现不良信息的,应当按照网络信息内容生态治理有关规定予以处置。第十条算法推荐服务提供者应当加强用户模型和用户标签管理,完善记入用户模型的兴趣点规则和用户标签管理规则,不得将违法和不良信息关键词记入用户兴趣点或者作为用户标签并据以推送信息。第十一条算法推荐服务提供者应当加强算法推荐服务版面页面生态管理,建立完善人工干预和用户自主选择机制,在首页首屏、热搜、精选、榜单类、弹窗等重点环节积极呈现符合主流价值导向的信息。第十二条鼓励算法推荐服务提供者综合运用内容去重、打散干预等策略,并优化检索、排序、选择、推送、展示等规则的透明度和可解释性,避免对用户产生不良影响,预防和减少争议纠纷。第十三条算法推荐服务提供者提供互联网新闻信息服务的,应当依法取得互联网新闻信息服务许可,规范开展互联网新闻信息采编发布服务、转载服务和传播平台服务,不得生成合成虚假新闻信息,不得传播非国家规定范围内的单位发布的新闻信息。第十四条算法推荐服务提供者不得利用算法虚假注册账号、非法交易账号、操纵用户账号或者虚假点赞、评论、转发,不得利用算法屏蔽信息、过度推荐、操纵榜单或者检索结果排序、控制热搜或者精选等干预信息呈现,实施影响网络舆论或者规避监督管理行为。

‘肆’ 人工智能在企业应用中的道德规范

人工智能在企业应用中的道德规范
AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?
人工智能(AI)越来越多地被用于企业应用,它可以通过解析数据来获得对客户和竞争对手的有用洞见,从而提供竞争优势。但还有一个并行的趋势:评估AI和企业AI算法的道德影响。
就在去年,麻省理工学院(MIT)和哈佛大学共同开展了一个探索AI道德规范的项目,耗资2700万美元。最近,谷歌在2014年收购的英国私企DeepMindTechnologies组建了一支新的研究团队,致力于研究AI道德规范。近期其他的AI道德规范项目包括IEEE全球人工智能和自主系统道德考量计划、纽约大学AI Now研究所和剑桥大学Leverhulme未来智能研究中心。
AI道德规范为什么如此令人感兴趣,这对企业组织意味着什么?
最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
AI的定义
一些专家坚持认为,AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
如果接受后面这个更广泛的定义,那么我们必须认识到,AI多年来就已经是电脑时代的特征。如今,在大数据、互联网和社交媒体时代,使用人工智能带来的许多优势已经广为人知,受到普遍认可:人工智能可以为企业提供竞争优势、提升效率、洞悉客户及其行为。
运用算法来发现数据中的重要模式和价值,这几乎被一致认为是价值创造的省钱途径,特别是在市场导向的竞争环境中。但AI道德规范项目的兴起证明,这些看似有利的AI应用可能会适得其反。最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
企业组织应该仔细思考他们使用AI的方式,因为这也会带来商业风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。
人的偏见和歧视
AI算法和我们用来训练这些算法的数据集通常来自人类。因此,嫌搜这些算法不可避免地反映了人的偏见。例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
这些偏见通常是无意的,但无论造成的后喊昌果是否有意为之,犯下上述错误的公司都会面临潜在风险。更重要的是,不管有意还是无意,人造算法可能固有的人类偏见在很大程度上逃避了审查,从而导致使用AI的企业面临风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。这会使企业面临品牌名声受损、法律诉讼、舆论抨击的风险,还可能失去员工和客户的信任。
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
AI的广泛应用和风险
存有偏见的皂液器只是一个例子,AI算法还可以用于招聘、量刑和安保行动。它们是社交媒体正常运行或不正常运行的内在因素。
简而言之,AI被用于无数的日常和专业工作。它正变得无处不在,它对企业的潜在风险也是如此。我们面临的挑战是理解算法如何设计和审查,以避免开发者的观点和偏见(不管是有意还是无意)。这提出了具有挑战郑者扒性的问题。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?(许多公司与第三方AI解决方案提供商合作。)
企业尽职调查是一项法律要求,这是否包括审查企业如何生成和使用AI应用程序?对于使用AI的企业来说,尽职调查和合规性的法律定义是否全面?道德规范和企业责任的传统概念是否适用于此?
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
想要回答这些问题,企业必须审视和阐明自己在企业道德方面的立场,并运用系统性方法来评估风险。
助长趋势
两个趋势可能加剧对AI应用和AI用户进行风险评估的紧迫性和重要性。首先,消费者、公民和政策制定者越来越重视和担心人工智能的日益普及和可能造成的滥用或意外后果。由此产生的结果是,透明度,公平性和问责制作为竞争优势得到了更多关注。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
行动号召
解决这些问题的第一步是意识。你的公司如何使用AI,谁可能受到影响?是否需要聘请外部专家来进行评估?
阐明你公司的核心价值观也很重要。你使用AI的方式是否符合那些价值观?如果不是,如何才能让二者相符?
有资源可以帮助解决这一问题。例如,我是IEEE全球人工智能和自主系统道德考量计划的执行成员,该计划致力于研究各种AI相关应用的最佳实践,提供有助于加强这方面认识和决策指导的资源,制定AI应用的标准。(IEEE是指电气与电子工程师协会,是最大的技术专业组织,致力于推动技术发展,造福人类。)
一个重要的资源是该计划的“符合伦理的设计:人工智能和自主系统优先考虑人类福祉的愿景”。这份文件已发布第二版,鼓励技术人员在开发自主和智能技术的过程中,把道德考量放在优先位置。
该计划与IEEE标准协会展开了密切合作。最近,IEEE标准协会开始制定儿童和学生数据治理、雇主透明实践和人类介入式AI的标准,确保由人类价值观来引导影响我们每个人的算法开发。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
请放心,这是一个新兴的话题,本文表达的担心和目标仍然是人们积极研究的领域。然而,想要在AI时代成为对社会负责任的企业,企业领导者必须意识到问题所在,开始识别企业价值观,将之嵌入到AI应用程序的道德设计中。

‘伍’ 人工智能时代的伦理道德面临哪些挑战

数字信息技术使几乎任何人、任何时间、任何地点都能轻易获得信息。这对我们社会的各个方面,从工业生产到分配、到商品和服务的消费,都产生了深远的影响。就像之前的技术革命一样,数字信息技术的影响如此广泛,我们不再只是简单地利用它——做我们以前做过的事情——而是通过改变我们的行为方式来适应它。

今天,数字信息技术已经重新定义了人们如何与他人进行社交互动,甚至如何找到伴侣。消费者、生产者和供应商、实业家和劳动者、服务提供者和客户、朋友和合作伙伴之间重新定义的关系,已经在社会上造成一场剧变,正在改变后工业时代对道德理性的定义。

我们正站在下一波科技革命的风口浪尖:人工智能。20世纪晚期的数字革命将信息带到了我们的指尖,让我们能够快速做出决定,而机构做出决定,从根本上说,取决于我们。人工智能正在通过自动化决策过程来改变这一状况,它有望带来更好的定性结果和更高的效率。人工智能游戏系统在击败国际象棋世界冠军卡斯帕罗夫(Gary Kasparov)和围棋世界冠军柯洁(Ke Jie)方面取得的成功,突显出人工智能在计算当前决策对潜在未来棋步的影响方面,在质量方面优于人类专家。

然而,在这个决策过程中,人工智能也带走了人类行为的透明性、可解释性、可预测性、可教性和可审核性,取而代之的是不透明性。这一举动的逻辑不仅不为参与者所知,也不为程序的创造者所知。随着人工智能为我们做出决策,决策的透明滚明度和可预测性可能会成为过去。

想象一下这样的情景:你的孩子回家找你,要求你给她零花钱,让她和朋友一起去看电影。你允许了。一周后,你的另一个孩子带着同样的要求来找你,但这次,你拒绝了。这将立即引起不公平和偏袒的问题。为了避免受到偏袒的指责,你要向孩子解释,她必须完成家庭作业,才有资格获得零花钱。

没有任何解释,家里一定会有紧张的气氛。现在想象一下用一个人工智能系统取代你的角色,这个系统已经收集了成千上万个处于类似情况的家庭的数据。通过研究其他家庭的零花钱决定的后果,得出结论,一个兄弟姐妹应该得到零用钱,而另一个兄弟姐妹不应该。

但人工智能系统无法真正解释其中的原因,只能说它衡量了你孩子的头发颜色、身高、体重以及其他所有它能获得的属性,以便做出对其他家庭似乎最有效的决定。那又怎么会有效呢?

在法庭上,过去的判决约束法官遵循先例,即使情况不完全相同,但大致相似。一致性在司法、政府、关系和道德规范中都很重要。AI没有遵守先例的法律要求。人类往往只有有限的直接或间接经验,而机器可能可以访问大量数据。

人类无法在一个长期的时间尺度内筛选他们的经历,而机器可以很容易地做到这一点。人类会排除那些被认为对决策无关紧要的因素,而机器不会排除任何因素。这可能导致不尊重先例的决定,其规模之大是人类可以理解的。随着企业和社会迅速转向人工智能,人工智能实际上可能比人类在更长的时间范围内做出更好的决策,而人类在更短的时间范围内就会感到困惑和沮丧,并侵蚀一个正常运转的社会的唯一货币,信任。

要理解基于人工智能的决策可能有多人工,研究人类如何做出决策是很重要的。人类的决策可能由一组明确的规则,或者仅仅基于结果论的关联,或者由组合来指导。人类对于与决策相关的信息也是有选择性的。由于缺乏选择性,机器在做决定时可能会考虑人类认为不恰当的因素。

有无数这样的例子,从微软(Microsoft)在其聊天机器人Tay开始在Twitter上发表煽动性反犹太言论后关闭它,到波士顿大学(Boston University)的一项研仿槐宴究,该研究发现“老板”(boss)、“建筑师”(architect)和“金融家”(financier)等词与男性、“护士”(nurse)和“接待员”(接待员)等词与女性之间存在性别备银关联。这可能是数据造成的,但它与我们的显式值形成了对比。如果数据驱动的过程依赖于这些人工智能算法生成的输出,它们将产生有偏见的决策,往往违背我们的道德价值观。

ProPublica在2016年提供了明显的证据。美国法院使用的一种电脑程序错误地将两年之内没有再犯的黑人被告标记为“惯犯”,其再次犯案的可能性几乎是白人被告的两倍——前者为45%,后者为23%。如果一个人也这么做,就会被谴责为种族主义者。人工智能揭示了我们明确的价值观和集体经验之间的分裂。我们的集体经验不是一成不变的。它们是由重要的社会决定所决定的,而这些决定又由我们的道德价值观所指导。我们真的想把决策过程留给那些只从过去学习、因而受制于过去的机器,而不是塑造未来的机器吗?

鉴于人工智能在医疗诊断、金融服务和就业筛查等领域的应用规模之大,任何一个偶然事件的后果都是巨大的。随着算法越来越依赖于提高可预测性的特性,控制这类决策的逻辑变得越来越不可思议。因此,我们失去了决策的全局性,抛弃了所有的原则来支持过去的观察。在某些情况下,这可能是不道德的,在某些情况下是非法的,在某些情况下是短视的。“惯犯算法”公然藐视无罪推定、机会均等等原则。

一致性是道德和正直不可或缺的。我们的决定必须遵循一个高于统计准确性的标准;几个世纪以来,相互信任、减少危害、公平和平等的共同美德已被证明是任何推理系统生存的基本基石。没有内部逻辑的一致性,人工智能系统缺乏健壮性和可问责性——这是在社会中建立信任的两个关键措施。通过在道德情感和逻辑推理之间制造裂痕,数据驱动决策的不可知性阻碍了批判性地参与决策过程的能力。

这是我们生活的新世界,复杂的决定被削减成反射性的选择,并被观察到的结果所强化;把复杂的东西简化成简单的东西,把道德简化成实用的东西。今天,我们的道德感为我们的决策提供了一个框架。也许不久之后,我们的决定就会让人们对我们的道德产生怀疑

‘陆’ 算法压榨的经济根源

算法压榨的经济根源是资本对劳动力的压榨,然后算法工程师来实时推动。
以推荐算法为例,除了咨询服务以外,人们还会收到商品、美食乎芹、音乐等各类不同的兴趣推荐,让每个人置身于"整个世界都在围绕自己而转"肢谨的错觉,彷佛最了解自己的不是家人,而是手机各种程序,从而成为重度手机依赖者,越来越难以离开手机,人也变得历顷基越来越懒惰和贪婪,从而资本达到网络获利。

‘柒’ 2021省考申论模拟题:算法推荐不应跑偏变味

【热点背景】

随着信息技术发展、大数据广泛应用,算法推荐让信息传播更加个性化、定制化、智能化,但也出现了一些乱象。据悉,一些新闻资讯、网络社交等平台的个性化推送存在“泛娱乐化信息多、低俗内容多、未经核实内容多”“三多”现象,也容易引发一些用户尤其是青少年沉迷网络问题。

【观点聚焦】

借助算法推荐,信息获取已从“大海捞针”进入“私人定制”时代,在带来方便的同时,也产生了一些负面影响。一是会加速形成“信息茧房”和“情绪传染”效应,导致用户视野局限。二是可能导致未成年人沉迷网络。三是给“大数据杀熟”提供便利。算法推荐逐渐成为各大平台的常规操作,通过用户数据量及数据更新频次,可轻易判断出是“生客”还是“熟客”,一旦技术被滥用,很可能沦为“杀熟”的帮凶。

算法推荐不应跑偏变味,而是要更有“温度”。这就要求设计者、运营者负起责任,相关企业严格遵纪守法,积极履行社会责任。比如,可以建立社会化评议机制,对平台运用算法产生的后果予以评价,从而为用户提供更好的服务。同时,还需要强有力的监管。近日,国家市场监管总局发布的《关于平台经济领域的反垄断指南(征求意见稿)》对此作出了相关规定,相关立法还需进一步完善。相关职能部门应行动起来,对算法推荐强化规制,依法惩戒涉嫌违法行为。

算法推荐在实践中不应片面追求效率,还必须兼顾公共价值观、社会道德等,确保算法推荐在正轨上运行。这需要监管部门、平台、企业以及用户共同发力,让算法推荐真正惠及用户。

‘捌’ 不得利用算法实施影响网络舆论,各部门对此作出了哪些举措

网络安全与社会公民生活息息相关,同时它与社会多个方面的利益相互影响。秉着“为人民服务”的理念。近日,国家互联网信息办公室联合多个部门发布了两个重要文件,为营造安全的网络环境保驾护航。

通过这一系列规定为国家互联网安全提供了保障。各部门相互努力,对不得利用算法对国家互联网安全进行影响作出了规定。这为国家其他行业的发展和事业的繁荣提供了信息安全基础。是非常的有利的。这些规定为国家互联网安全提供了法律保障和法律依据,为国家互联网科技发展保驾护航。相信国家的这一次出手扼杀了许多不法手段来获取公民消息的途径,也保障了国民的信息网络安全。

‘玖’ 关于java新闻网站的算法

(一)算法伦理的研究

1.算法内涵界定。算法源于数学,但现代算法又远远不止于传统数学的计算范畴。算法多被理解为是计算机用于解决问题的程序或步骤,是现代人工智能系统的运行支柱。《计算主义:一种新的世界观》(李建会等,2012)中将算法定义为能行的方法,在外界的常识性理解中所谓算法就是能感受到的一套运算规则,这个规则的特点在于运算时间的有限性、计算步骤的有穷性、输入结果的确切性,它是机械步骤或能行可算计程序。该定义点明了算法应具备的两个基本属性—或侍李—有限性与有穷性。《用计算的观点看世界》(郦全民,2016)则从信息传播的角度解读算法,认为算法实质上是信息处理方法。

2.算法伦理研究

伦理关乎道德价值真理及其判断。存在于自然界、社会中的人,其行为应遵循一定的伦理道德规范。伦理的效应要导向善。伦理道德关注对个体存在的尊重、个体的自由、公平正义以及组织团体的延续与发展等问题。在一定程度上可以说,当今的人类社会已经不能脱离智能算法系统而运行了。

算法无时无处不在对世界产生影响,因而算法也会必然的触碰到伦理道德。和鸿鹏(2017)已指出,算法系统在人类社会生活中的广泛应用,会陷入诸多如人类面临且无法回避的伦理两难选择困境之中。而当算法与伦理发生关联时,学界一般认为会引出职业伦理和技术伦理两种伦理问题。

职业伦理主要与算法系统的开发者有关,指开发者是带有个性价值观、伦理道德观去研发算法系统的行为体,因而算法系统一开始便会掺杂着设计人主观性的伦理道德观。设计者出于何种目的开发某算法系统、面对不同问题设计者持有的伦理道德态度,这些衫迟都会在算法系统的运行中得到体现。

技术伦理是算法系统在一定意义上可称之为一种科学技术,这种技术自身及其运作结果都会负载着伦理价值。其实在一些情况下,职业伦理与技术伦理之间并没有很明确的界别,关于这一点,刘则渊跟王国豫已做过论述。

本文将主要从技术伦理的角度对算法关涉伦理这一问题尝试做深入研究。

(二)网络新闻传播的算法伦理研究

算法与技术的融合不断英语于网络新闻传播领域中,从数据新闻到机器写作,从算法推送到舆情到分析,国内新闻传媒领域的机器新闻和相关研究逐渐发展,金兼斌在《机器新闻写作:一场正在发生的革命》(2014),作者较早的将眼光聚焦于基于算法的新闻内容生产和编辑。认为在自动化新闻生产大发展的前提下,诸如新闻生产或分发中劳动密集型的基础性工作与环节都将被技术取代。张超、钟新在《从比特到人工智能:数字新闻生产的算法转向》(2017)认为算法正在从比特形式走向人工智能阶段,这种转向使得数字新闻与传统新闻的边界进一步明晰,促使数字新闻生产也产生了变革。胡万鹏在《智能算法推荐的伦理风险及防范策略》中总结了从算法推送方面:针对新闻的价值观所受到的负面影响;以及新闻的公共性、客观性和真实性受到的削弱进行分析;从受众方面:将具体对信息茧房现象以及受众的知情权和被遗忘权展开探讨;从社会影响方面,则针对社会群体、社会公共领域和社会文化所受到的消极影响展开论述。

根据以上文献的梳理可以看出,国内目前对网络新闻传播的算法伦理研究主要集中在新闻业态算法伦理失范的相关问题,因为与其他失范问题相比,这是比较容易发现的。但目前关于网络新闻传播的算法伦理的国内研究还存在不足:国内算谈棚法伦理和网络新闻传播算法伦理的研究还是在起步阶段,比较成熟的系统性研究还未出现;关于算法开发人员和平台的责任机制的研究都比较薄弱,总上所述,算法推送新闻的伦理问题研究是有必要继续加强的。

2.新闻推荐算法的兴起、发展与原理

2.1新闻推荐算法的兴起

随着计算机技术的信息处理的维度越来越高,信息处理的能力不断提升,算法技术可以从大数据中筛选出用户最关心最感兴趣的信息,改变了原有的新闻信息传播方式,重塑了新的媒介生态和传播格局。

但反过来看,在人人都能生产信息的背景下,信息的生产、传播和反馈的速度都是呈几何倍数增长,用户面对的信息越来越多。由于设备的局限性和信息海量,用户无法集中注意力看自己感兴趣的内容,也无法及时抓取对自己有用的信息,于是出现了“注意力经济”。美国经济学家迈克尔·戈德海伯(1997)认为,当今社会是一个信息极大丰富甚至泛滥的社会,而互联网的出现,加快了这一进程,信息非但不是稀缺资源,相反是过剩的。相对于过剩的信息,只有一种资源是稀缺的,那就是人们的注意力。换句话说,信息不能够一味追求量,还要有价值,价值就在于用户对信息的注意力,谁获得了用户的注意力就可以有市场的发展空间,通过“贩卖”用户的注意力能够使新媒体聚合平台获得利润,维持发展。再加上现在生活节奏越来越快,人们对信息获取的量和效率要求提高,不想把时间浪费在自己不感兴趣的信息,从而用户获取信息的“个性化”特征变得明显起来。

基于此背景下,算法推送新闻的传播机制应运而生,用户不需要特意搜索自己需要的信息,而是海量的信息会自行“找到”用户,为用户节省搜索时间之余,又能做到真正为用户提供有用的信息。

2.2新闻推荐算法的发展现状

算法推荐是依据用户数据为用户推荐特定领域的信息,根据受众使用反馈不断修正并完善推荐方案。目前主要有两类新闻机构使用算法推送,其一是新型的互联网新闻聚合类平台,国内主要是以今日头条和一点资讯等算法类平台为代表,在我国新闻客户端市场上拥有极高的占有率。张一鸣创建今日头条是依靠大数据和算法为用户推荐信息,提供连接人与信息的服务,算法会以关键词等元素判断用户的兴趣爱好,从全网抓取内容实现个性化推荐。国外则是以Facebook、Instagram等平台为代表,这些APP都是通过算法挖掘用户的数据,以用户个性化需求为导向对用户进行新闻推送。另一种则是专业新闻生产的传统媒体,为积极应对新闻市场的竞争和提高技术水平而转型到新闻全媒体平台,如国内的“人民日报”等,国外利用算法推送向用户推送新闻的传统媒体则有美国的美联社、华盛顿邮报和英国的BBC等,他们利用算法监督受众的数量还有阅读行为,使他们的新闻报道能够更加受受众的喜欢,增加用户的粘性。

2.2新闻推荐算法的原理

2.2.1新闻推荐算法的基本要素

算法推送有三个基本要素,分别是用户、内容和算法。用户是算法推送系统的服务对象,对用户的理解和认知越是透彻,内容分法的准确性和有效性就越准确。内容是算法推送系统的基本生产资料,对多种形式内通的分析、组织、储存和分发都需要科学的手段与方法。算法是算法推送技术上的支持,也是最核心的。系统中大量用户与海量的信息是无法自行匹配的,需要推送算法把用户和内容连接起来,在用户和内容之间发挥桥梁作用,高效把合适的内容推荐给合适的用户。

2.2.2新闻推荐算法的基本原理

算法推送的出现需要具备两个条件:足够的信息源和精确的算法框架。其中,算法的内容生产源与信息分发最终效果密切相关:是否有足够多的信息可供抓取与信息是否有足够的品质令用户满意都将对信息的传播效果产生影响。与此同时,分发环节也在向前追溯,改变着整个传播的生态。目前,国内新闻传播领域所使用的算法推送主要有三大类——协同过滤推送、基于内容推送和关联规则推送。

协同过滤推送分为基于用户的协同过滤和基于模型的协同过滤。前者主要考虑的是用户和用户之间的相似度,只要找出相似用户喜欢的新闻文章类别,并预测目标用户对该文章的喜欢程度,就可以将其他文章推荐给用户;后者和前者是类似的,区别在此时转向找到文章和文章之间的相似度,只有找到了目标用户对某类文章的喜爱程度,那么我们就可以对相似度高的类似文章进行预测,将喜爱程度相当的相似文章推荐给用户。因此,前者利用用户历史数据在整个用户数据库中寻找相似的推送文章进行推荐,后者通过用户历史数据构造预测模型,再通过模型进行预测并推送。

基于内容的推送即根据用户历史进行文本信息特征抽取、过滤,生成模型,向用户推荐与历史项目内容相似的信息。它的优点之一就是解决了协同过滤中数据稀少时无法准确判断分发的问题。但如果长期只根据用户历史数据推荐信息,会造成过度个性化,容易形成“信息茧房”。

关联规则推送就是基于用户历史数据挖掘用户数据背后的关联,以分析用户的潜在需求,向用户推荐其可能感兴趣的信息。基于该算法的信息推荐流程主要分为两个步骤,第一步是根据当前用户阅读过的感兴趣的内容,通过规则推导出用户还没有阅读过的可能感兴趣的内容;第二是根据规则的重要程度,对内容排序并展现给用户。关联规则推送的效果依赖规则的数量和质量,但随着规则数量的增多,对系统的要求也会提高。

2.2.3算法推送的实现流程

在信息过载的时代,同一个新闻选题有很多同质化的报道,因此分发前需要对新闻内容进行消重,消重后的新闻内容便等待推送,此时的推送有三个类别:启动推送、扩大推送和限制推送。

3.“今日头条”新闻推荐算法分析

“今日头条”是国内一款资讯类的媒体聚合平台,每天有超过1.2亿人使用。从“你关心的,才是头条!”到如今的“信息创造价值!”,产品slogan的变化也意味着今日头条正逐渐摆脱以往单一、粗暴的流量思维,而开始注重人与信息的连接,在促进信息高效、精准传播的同时注重正确的价值引导。

在2018年初,“今日头条”的资深算法架构师曹欢欢博士在一场分享交流会上公开了其算法运行原理。在他的叙述中,非常详细地介绍了“今日头条”的算法推荐系统概述以及算法推荐系统的操作原理。

3.1.1-1曹欢欢博士的今日头条算法建模

上图用数学形式化的方法去描述“今日头条”的算法推送,实际上就是一个能够得出用户对内容满意程度的函数:即y为用户对内容的满意度,Xi,Xc,Xu分别是今日头条公开的算法推送的三个维度:Xi是用户,包括用户的性别、年龄、职业和兴趣标签,还有其他算法模型刻画的隐形用户偏好等;Xc是环境,这也是移动互联网时代新闻推送的特点,由于用户随时随地在不停移动,移动终端也在移动,用户在不同的工作场合、旅行等场景信息推送偏好也会不同;Xu是内容,今日头条本身就是信息聚合类平台,平台上涵盖各种不同形式的内容。本章将以该函数为基础,逐一分析今日头条的推荐算法。

3.1推荐维度之一:内容分析

内容分析原指第二次世界大战期间,传播学家拉斯韦尔等研究学家组织了“战士通讯研究”的工作,以德国公开出版的战时报纸为分析研究对象,弄清报纸内容本质性的事实和趋势,揭示隐含的隐性情报内容,获取了许多军情机密情报并且对事态发展作出情报预测。在“今日头条”中,内容分析则是对文章、视频内容提取关键要素,通过对文本、视频标题关键字进行语义识别,给内容进行分类。“今日头条”的推送系统是典型的层次化文本分类算法,来帮助每篇新闻找到合适的分类,比如:第一大分类是政治、科技、财经、娱乐、体育等,体育类可以下分篮球、足球、网球等,足球又可以下分中国足球和国际足球,中国足球最后下分为甲、中超、国家队等。这一步是对文章进行对这个工作主要目的是对文章进行分类,方便以后对客户推荐。

想要内容分析实现效果,则需要海量的内容信息给算法系统提供有效的筛选和分类。“今日头条”既然是依赖于算法推送新闻,那它背后的数据库必然是强大的,“网页蜘蛛”和“头条号”就是支撑今日头条平台消息来源的重要渠道,其消息来源极其丰富,何时何地有何新鲜事,都能高效率抓取信息。

第一个消息来源的渠道是“网页蜘蛛”,“网页蜘蛛”又叫网页爬虫,头条使用的就是搜索引擎爬虫叫“Bytespider”。它能按照一定的规则,自动爬行抓取互联网的信息或脚本,就像蜘蛛通过蛛网进行捕食,当发现新的信息资源,蜘蛛会立刻出动抓取信息内容并将其收入自己的数据库中。和微信的垂直搜索不同,Bytespider是能够抓取全网内容的全新搜索引擎,因此“今日头条”的搜索引擎功能很全面,搜索的资源很广,资源包容性极高。

Bytespider信息抓取的基本流程如下:首先是网页抓取。Bytespider顺着网页中的超链接,从这个网站爬到另一个网站,通过超链接分析连续访问抓取更多网页。被抓取的网页被称之为网页快照。由于互联网中超链接的应用很普遍,理论上,从一定范围的网页出发,就能搜集到绝大多数的网页。第二步是处理网页。搜索引擎抓到网页后,还要做大量的预处理工作,才能提供检索服务。其中,最重要的就是提取关键词,建立索引库和索引。其他还包括消除重复网页、判断网页类型、分析超链接、计算网页的重要度、丰富度等。第三步提供检索服务。用户输入关键词进行检索,搜索引擎从索引数据库中找到匹配该关键词的网页,为了用户便于判断,除了网页标题和URL外,还会提供一段来自网页的摘要以及其他信息。

3.2推荐维度之二:用户分析

用户分析通过提取用户的有效数据,如用户经常浏览的文字类型、经常搜索的关键字、注册时登记信息的内容等,算法系统可以将每个用户的浏览记录、浏览时间、留言、评论和转发等行为进行关键字提取,最终形成用户画像,以便之后对用户进行文章和视频的精准推送。举个例子,给喜欢阅读“体育”的用户标上“体育”标签;给喜欢“娱乐”的用户标上“娱乐”的标签,这一步的作用是给用户的兴趣进行建模,包括用户对文章和视频的全局热度、分类热度,主题热度,以及关键词热度等。热度信息在大的推荐系统能够解决新闻冷启动问题,帮助新闻实现推送。

用户分析还具有协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。协同特征也就是“联想式”的推送方法,并非只考虑用户已有历史,而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。根据用户之间计算数据的相似程度,把用户细化分类成为不同的目标群体,再向目标群体集中的推送其感兴趣的新闻内容

内容分析和用户分析是相辅相成的,如果没有分析的文本标签,无法得到用户兴趣标签,没有用户的兴趣标签就无法给用户定位实现精准推送。

3.3推荐维度之三:环境分析

环境分析就是根据文章的时效性和接近性推送给相应的用户,比如获取用户当前所在位置是否在旅游区,这个可以通过获取用户的实时位置来实现。还会不断与用户之前经常出现的所在地进行对比等方式确认当前状态,分析出用户是在常住地区还是在旅行。这时若系统检测到用户正在泰山及周边游玩,则可能会相应推送泰山的相关文章、周边的交通新闻和天气信息等等。

通过上面三个推荐维度可以作为数据基础,分析当前用户处于什么环境,结合用户画像以及文章的内容分类来推荐,尽量做到推送的内容都是用户所感兴趣的。算法系统还会通过内容分类、分析抽取,把文本相似度高的文章,包括新闻主题、内容相似的文章进行消重,解决推送重复的问题,进一步对目标用户进行精确且不重复的内容推荐。最后过滤质量低俗色情的内容,以免造成平台会有负面倾向。

3.4“今日头条”新闻推荐算法的价值取向

3.4.1“用户为上”

“今日头条”的算法推送是站在用户的立场上的,以满足用户个性化和推送的精准性,“今日头条”也重新衡量了新闻价值标准:以用户为上,用户对新闻内容和阅读方式的满意度便是平台推送新闻的价值宗旨。传统媒体时代,只有报纸和电视,有什么受众就得看什么,而如今“今日头条”根据用户兴趣去进行推送。算法推送平台用户范围广,很多用户热衷关注负面,也有许多用户都有窥视欲和好奇心,喜欢无聊八卦和无聊新闻,而且在好奇心作用下用户都有从众心理。这使得生产者过度去迎合受众,只要是用户喜欢看就可以发表在“今日头条”上。

3.4.2“算法主导”

“今日头条”更注重技术分发,生产者是用户,受众者也是用户,这样一来内容监管和分发就很困难。算法推送机制根据用户爱好进行推送,这样生产的内容快、也无疑会加速内容配送效率。在算法推送模型中,用户点击频率、阅读时间、点赞评论以及转发在算法时代都是可以进行量化的目标。在这样情况下生产的内容,想要获得较大点击率和推送率,需要标题才能吸引用户,因为用户在平台一眼能看到的就是标题和配图。标题和配图决定用户是否会打开你的内容,这导致许多内容生产者在编辑新闻标题时陷入标题党的怪圈,还有导致低俗内容的呈现,以制造冲突制造悬念贴标签等方式引用户点击,意图把自己的文章做成爆文。对于海量的信息内容,即使今日头条数据和智能推荐做的再好,目前来说也难以抵挡海量的垃圾信息。

4.算法推送新闻引发的伦理问题

在如今网络时代的传播思维中,“用户为上”、“算法主导”的新闻价值取向已经在算法聚合类平台成为了普遍,算法推送技术作为吸引用户的手段,搭建起一个充满诱导的媒介环境,以此增加用户对平台的粘性。算法推送技术在获取信息、传播速度等方面与以往相比有着跨时代的进步,但与此同时,由于算法推送技术的加入,衍生出新的伦理问题,并且日渐复杂化。

4.1算法推送引发的伦理问题

4.1.1算法推送过于机械化,没有思考能力

单向的算法推荐对用户来说经常会带来内容杂乱无章、信息量过大、信息价值低等问题。从逻辑讲,算法只是从关键字的检索匹配来完成统计推荐,但对新闻报道或文学作品具有艺术性、专业性的内容来说,是不能保证推送的质量的。算法方面,目前主要基于匹配检索与统计,大部分都是个人关注的信息类型和标签,难以达到较好的推送效果。一千个人眼里有一千个哈姆雷特,但是计算机只有只有一个。算法技术过于注重机械化的统计,只根据关键词来推荐用户,对我们中国具有博大精深的中国文字文化底蕴,推荐算法是远远不够的。整个新闻客户端显得像是一个菜市场,没有态度、没有风格,阅读感受单一化,呈现了碎片化的特点。新闻不只是让用户能够了解身边发生的新鲜事,还有宣传正面思想和传播正能量的作用,新闻应该还要给人们带来新的思考。让机器做出正确判断很简单,但是让机器综合心理学、社会学、乃至某细分领域内的规则做出判断还要正确地引导受众则很难,正如现在算法技术还不能完成一篇富有人文性、文学性和批判性的深度报道,它止步在了碎片式的、表层的传播范畴。

4.1.2容易引起“信息茧房”效应

“信息茧房”这一概念是凯斯.桑斯坦在《信息乌托邦》一书中提出的。意指受众在过度的信息自我选择之中,这样会降低接触外界其他信息的可能,从而将自己的生活桎梏于蚕茧一般的“蚕房”中的现象。人们的信息领域会习惯性被自己的兴趣引导,信息窄化带来了受众对信息接收的单一性,这种单一性的可能会使受众陷入循环,加重受众信息同质化。

4.1.3算法推送的“伪中立性”

客观和全面是新闻伦理的基本要求,新闻从业者必须从可好信息源来获取真实的信息,以客观的态度反应现实。我们惯常认为,互联网技术服务商是技术中立者,不需要承担约束大众媒体的社会责任,然而当信息把关人又新闻编辑转变为算法工程师,传统的媒介伦理似乎已经失效。算法具有商业倾向性,“中立性”是算法平台用以逃避媒体责任的理由,给大众媒介造成传播乱象,如此一来更像是一场算法平台“肆意妄为又不想负责”的诡辩。

算法平台的信息源是经过选择和过滤的,“头条号”的内容占“今日头条”整个信息系统的绝大部分,然而在“人人都可以做新闻人”的时代,头条号平台是一个开放的网络媒介环境,存在大量的偏见和错误的认知。无论是“今日头条”平台设立的算法规则,还是其他爬虫的抓取的关键词,算法系统的信息源很多是具有目的性的、有偏见和非客观的信息,所以信息源不能直接作用于用户。因此,筛选算法系统的信息源与传统的人工编辑相比较,范围极广且很难把关,若算法被恶意利用,那么使整个传播系统将会被轻易控制。

4.1.4算法推送里的“议程设置”

原议程设置功能揭示的重要内涵是:“受众对新闻的看法虽然被大众媒体议程设置功能所主导,但其更深刻的是议程设置给大众媒体新闻带来放大与延伸,从而使受众对新闻选择做出能动性修正,让受众在满足需求和媒介依赖中逐渐培养出的潜在认同感”。

推送算法技术在互联网平台的运用,使原来传统媒体主导的议程设置过程发生了变化,伴随着传播权的转移、公众参与度的提高和信息量剧增等原因导致议程设置功逐渐能减弱。过往传统新闻的内容是由编辑有选择地进行报道后再呈现在受众面前的,而个性化新闻推送是用户自己来选择看哪一方面的内容,而这一环节中,天然的技术赋权将传播权从传统媒体下放至平台的用户,使得受众和社会的连接无需依赖传统媒介,新闻媒体作为把关人的作用和议程设置功能都在减弱。

4.2算法新闻治理缺陷下的算法权利异化

算法作为人工智能的基石之一,是“一种有限、确定、有效并适合用计算机程序来实现的解决问题的方法,是计算机科学的基础”。近年来,伴随人工智能深度学习算法取得的重大突破和大数据时代的到来,人工智能的应用场景不断拓展,人工智能时代正逐渐从想象成为现实。借助于海量的大数据和具备强大计算能力的硬件设备,拥有深度学习算法的人工智能机器可以通过自主学习和强化训练来不断提升自身的能力,解决很多人类难以有效应对的治理难题。伴随人工能算法在国家和社会治理中重要性的日渐凸显,国家和社会对于算法的依赖也逐渐加深,一种新型的权力形态——算法权力也随之出现。

可以把算法权利分为四种:数据主权、算法设计权、研发的资本权和算法控制权。由于前三种权利都是单向的、算法开发者赋予算法的权利,是属于算法开发者的,与算法分发平台呈现的效果没有直接的影响,所以本文将着重论述算法控制权。

算法控制权是双向的,用户是算法技术数据行为的提供者,同时又是被算法技术控制的受害者。例如我们看到“今日头条”会通过推送算法来监管用户的发布和浏览行为,同时平台会通过算法决策系统来实现内容的发布去引导用户。算法控制权当然是一种天然技术赋予的权利,但算法控制权是在用户提供数据行为的情况下才得以实现的,因此算法控制权既存在内容生产权,同时有要尊重和保护算法相对人的义务。

正因为如此,算法技术被认为是一种双刃剑,一方面算法能够做出精准的行为预测,可以为管理者提供非常好的循环干预机制;对于公共行为主体来说,可以通过对大数据的应用来解决社会治理问题,对于私人主体来说可以借助数据来提供个性化和定制化的服务;另一方面,算法技术存在着诸如利益和风险不对称等问题,而且由于算法技术发展的超前性,新科技的创造者具备不对称的信息和技术优势,能够按照自身利益的需求来塑造在平台上的算法推送逻辑和社会系统,这带来了监管的不确定性。人们要通过集体行为去承担社会责任,通过这样的方式规制算法权利,可以让我们能够对算法分发系统的意义和价值得到更深刻的思考。

‘拾’ 抖音推荐算法的伦理问题

抖音推荐算法的伦理问题主要有以下几点孙衫皮:
1. 内容审查:抖音推荐算法可能会屏蔽一些不符合社会伦理道德的内容,但是这种审查可能会对用户的自由表达造成限制。
2. 用户隐私:抖音推则差荐算法可能会收集用户的个人信息,以便更好地推荐内容,但这可能会侵犯用户的隐塌尘私权。
3. 偏见和歧视:抖音推荐算法可能会基于用户的性别、种族、宗教信仰等因素,对用户进行歧视和偏见性的推荐。
4. 内容控制:抖音推荐算法可能会控制用户看到的内容,从而对用户的获取信息造成影响。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:330
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:371
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:606
java用什么软件写 发布:2025-05-18 03:56:19 浏览:27
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:100
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:935
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:729
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:798
网卡访问 发布:2025-05-18 03:35:04 浏览:505
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:367