armlinux内核启动流程
⑴ 如何在Windows上建立arm-linux开发环境
在嵌入式产品大行其道的今天,Linux经过裁剪和优化而成的uClinux在嵌入式领域众多的操作系统中占有一席之地。从uClinux字面上就可以看出它的含义,即“微控制器领域中的Linux系统”。
uClinux从Linux 2.0/2.4内核派生而来,沿袭了Linux的绝大部分特性。它是专门针对没有MMU(内存管理单元)的CPU,并且为嵌入式系统做了许多小型化的工作。它通常用于具有很少内存或Flash的嵌入式操作系统。在GNU通用许可证的保证下,运行uClinux操作系统的用户可以使用几乎所有的Linux API函数。由于经过了裁剪和优化,它形成了一个高度优化,代码紧凑的嵌入式Linux。它具有体积小、稳定、良好的移植性、优秀的网络功能、完备的对各种文件系统的支持,以及丰富的API函数等优点。uClinux与Linux在兼容性方面表现出色,uClinux除了不能实现fork()外,其余uClinux的API函数与标准Linux完全相同。
uClinux的基本架构
Boot Loader:负责Linux内核的启动,用于初始化系统资源。这部分代码用于建立Linux内核运行环境和从Flash中装载初始化Ramdisk。
内核初始化:Linux内核的入口点是start kernel()函数。它初始化内核的其它部分,包括捕获、IRQ通道、调度、设备驱动、标定延迟循环,最重要的是能够fork“init”进程,以启动整个多任务环境。
系统调用函数/捕获函数:在执行完“init”程序后,内核对程序流不再有直接地控制权。此后,它的作用仅仅是处理异步事件(例如硬件中断)和为系统调用提供进程。
设备驱动:设备驱动占据了Linux内核很大部分。同其它操作系统一样,设备驱动为它们所控制的硬件设备和操作系统提供接口。
文件系统:Linux最重要的特性之一就是对多种文件系统的支持。这种特性使得Linux很容易地同其它操作系统共存。文件系统的概念使得用户能够查看存储设备上的文件和路径而无须考虑实际物理设备的文件系统类型。
交叉编译环境
uClinux是一个出色的开发平台,但是在我们能在电脑上编写自己的嵌入式应用程序之前,还必须做的一件事,就是给uClinux建立完善的编译环境。关于交叉编译,简单地讲是指在一个平台(操作系统)上可以生成能在另一个平台上执行的代码。
但是对于有些不是很懂Linux环境的人来讲,用uClinux开发程序会感到诸多不便。这里提供了在装有Windows系统的宿主机(开发时所用的机器)上建立交叉编译环境的方法。
为了在Windows下开发嵌入式操作系统应用程序,可以在Windows环境下装上Cygwin软件。Cygwin是一个在Windows平台上运行的Unix模拟环境,是Cygnus Solutions公司开发的自由软件。它对于学习掌握Unix/Linux操作环境,或者进行某些特殊的开发工作,尤其是使用GNU工具集在Windows上进行嵌入式系统开发,非常有用。
Cygnus首先把gcc、gdb等开发工具进行了改进,使它们能够生成并解释WIN32的目标文件。然后,把这些工具移植到Windows平台上去。一种方案是基于WIN32 APl对这些工具的源代码进行大幅修改,这样做显然需要大量工作。因此,Cygnus采取了一种不同的方法——他们写了一个共享库(就是cygwinl.d11),把WIN32 API中没有的Unix风格的调用(如fork、spawn、signals、select、sockets等)封装在里面。也就是说,他们基于WIN32 APl写了一个Unix系统库的模拟层。这样,只要把这些工具的源代码和这个共享库连接到一起,就可以使用Unix主机上的交叉编译器来生成可以在Windows平台上运行的工具集。以这些移植到Windows平台上的开发工具为基础,Cygnus又逐步把其它的工具(几乎不需要对源代码进行修改,只需要修改他们的配置脚本)软件移植到Windows上来。这样,在Windows平台上运行bash和开发工具、用户工具,感觉好像在Unix上工作。
生成交叉编译器
Cygwin软件目前最新版本是Cygwin DLL 1.5.9-1。它的网址是http:// Cygwin.com,上面就有该程序的压缩包,下载后解压安装就ok了。
在自己生成交叉编译器之前,首先对Cygwin进行一些设置。假设Cygwin安装在e目录下,在打开Cygwin窗口之前,进入到E:\Cygwin目录。在这个目录下,有一个文件名为Cygwin.bat的批处理文件,编辑该文件,在第一行后加入setCYGWIN--titlentea,这是因为Cygwin的启动批处理文件需要启动Unix文件系统模拟。修改完毕且保存后退出。双击桌面上的Cygwin图标,打开后默认用户为在Windows中登录的用户名(这里所使用的操作系统是Windows 2000 Professsional),在根目录(即E:\cygwin)下输入:
cd bin
mV Sh.exe Sh—original.exe
n —S bash.exe Sh.Exe
做上述几步的原因是大多数Linux系统把sh符号链接到bash,而Cygwin上的sh.exe和bash.exe是不同的,因此必须用bash代替sh。
从网站上下载生成工具链的各种源码,根据脚本文件build-ucLinux-tools.sh建立可在Windows下编译用户应用程序的交叉编译器,生成的交叉编译器最终被打包为arm-elf-tools-cygwin-yyyymmdd.tar.gz的文件,其中YYYY为生成交叉编译器的年,mm为生成交叉编译器的月份,dd为日期。
这里,需要注意的是在生成交叉编译器的过程中,可能会遇到多次错误,读者应该根据给出的出错信息,进行相应文件的修改。由于习惯上的原因,Linux下的压缩文件一般都是以.tar.gz或者.tgz结尾的。虽然用Windows下的解压软件,比如winzip或者winrar也可以解压这些文件,但是不推荐使用这类解压软件,因为可能会造成某些信息的丢失。
⑵ linux中arm如何启动和关闭运算
输入arm 按键盘tab键等几秒看行 显示系统命令
⑶ 请问armlinux在启动过程中是先加载驱动还是先挂载文件系统
Linux内核一般都答亩携会在RAM中运行,所以在调用Linux内核之前bootloader必须设置和初始化清伏RAM,上电或复位后从flash读取bootloader,通过bootloader初始化RAM,初始化串口,检测处理器类型,设置Linux启动耐茄参数,调用Linux内核映像。在bootloader将Linux内核映像拷贝到RAM以后,可以通过下例代码启动Linux内核:call_linux(0,machine_type,kernel_params_base)。machine_tpye是检测出的处理器类型,kernel_params_base是启动参数在RAM的地址。建议阅读linux相关书籍比如说《linux就该这么学》。
⑷ ARM linux内核启动时几个关键地址
1. 内核启动地址
ZTEXTADDR
解压代码运行的开始地址。没有物理地址和虚拟地址之分,因为此时MMU处于关闭状态。这个地址不一定时RAM的地址,可以是支持读写寻址的flash等存储中介。
Start address of decompressor. here's no point in talking about virtual or physical addresses here, since the MMU will be off at the time when you call the decompressor code. You normally call the kernel at this address to start it booting. This doesn't have to be located in RAM, it can be in flash or other read-only or read-write addressable medium.
在arch/arm/boot/compressed/Makefile中说的很明确
#
# We now have a PIC decompressor implementation. Decompressors running
# from RAM should not define ZTEXTADDR. Decompressors running directly
# from ROM or Flash must define ZTEXTADDR (preferably via the config)
# FIXME: Previous assignment to ztextaddr-y is lost here. See SHARK
ifeq ($(CONFIG_ZBOOT_ROM),y)
ZTEXTADDR := $(CONFIG_ZBOOT_ROM_TEXT)
ZBSSADDR := $(CONFIG_ZBOOT_ROM_BSS)
else
ZTEXTADDR := 0
ZBSSADDR := ALIGN(8)
endif
ZRELADDR
内核启动在RAM中的地址。压缩的内核映像被解压到这个地址,然后执行。
This is the address where the decompressed kernel will be written, and eventually executed. The following constraint must be valid:
__virt_to_phys(TEXTADDR) == ZRELADDR
The initial part of the kernel is carefully coded to be position independent.
一般定义在项目目录下,比如:
arch/arm/mach-at91/Makefile.boot: zreladdr-y += 0x70008000
arch/arm/mach-at91/Makefile.boot: zreladdr-y += 0x20008000
arch/arm/mach-cns3xxx/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-davinci/Makefile.boot: zreladdr-y += 0xc0008000
arch/arm/mach-davinci/Makefile.boot: zreladdr-y += 0x80008000
arch/arm/mach-dove/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-ebsa110/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-exynos/Makefile.boot: zreladdr-y += 0x40008000
arch/arm/mach-footbridge/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-gemini/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-gemini/Makefile.boot: zreladdr-y += 0x10008000
arch/arm/mach-integrator/Makefile.boot: zreladdr-y += 0x00008000
arch/arm/mach-iop13xx/Makefile.boot: zreladdr-y += 0x00008000
在arch/arm/boot/Makefile中被赋值:
ZRELADDR := $(zreladdr-y)
PARAMS_PHYS := $(params_phys-y)
INITRD_PHYS := $(initrd_phys-y)
... ...
ifneq ($(LOADADDR),)
UIMAGE_LOADADDR=$(LOADADDR)
else
ifeq ($(CONFIG_ZBOOT_ROM),y)
UIMAGE_LOADADDR=$(CONFIG_ZBOOT_ROM_TEXT)
⑸ 嵌入式ARM linux系统如何设置开机启动应用程序
其实楼主的问题很专业,之前我在周立功那边也了解过不少。x0dx0a 当用户需要EasyARM-iMX283在开机启动后就运行指定的应用程序或指令时,可以通过vi命令编辑/etc/rc.d/init.d/start_userapp,将要执行的指令添加到里面。若用户有一个hellow的程序放在/home/目录中,那么设置hellow程序开机启动的方法如程序清单 1.1红色部分所示。x0dx0a程序清单1.1 用户启动文件x0dx0a#!/bin/sh x0dx0a#you can add your app start_command three x0dx0a/home/hellow x0dx0a#start qt command,you can delete it 下面是启动QT界面的指令,若用户不需要启动QT,可以直接删除x0dx0aexport TSLIB_PLUGINDIR=/usrb/ts/ x0dx0aexport TSLIB_CONFFILE=/etc/ts.conf x0dx0aexport TSLIB_TSDEVICE=/dev/input/ts0 x0dx0aexport TSLIB_CALIBFILE=/etc/pointercal x0dx0aexport QT_QWS_FONTDIR=/usrb/fontsx0dx0aexport QWS_MOUSE_PROTO=Tslib:/dev/input/ts0 x0dx0a/usr/yuan/zylauncher/start_zylauncher &x0dx0ax0dx0a如果程序是一个阻塞程序(程序被运行后不会退出或返回),则可能会导致位于其后的指令或程序无法得到执行,并且始终占用串口终端,造成其他程序(比如Shell)无法通过串口终端与用户交互。对于此类应用程序,可以在其后面添加“ &”(注意:是“空格”+“&”符号)让其在后台运行,如下所示:x0dx0a/home/hellow &
⑹ 如何使用ARM+Cortex-A9的移植一个Linux操作系统,作为服务器
要在ARM Cortex-A9上移植Linux操作系统并将其用作服务器,需要执行以下步骤:
选择适当的Linux发行版:首先,需要选择适合ARM Cortex-A9的Linux发行版。一些流行的ARM Linux发行版包括Ubuntu、Debian、Fedora、OpenSUSE等。您可以从官方网站下载适合您的ARM Cortex-A9的版本。
下载交叉编译工具链:由于ARM Cortex-A9是基于ARM架构的,因此需要使用交叉编译工具链来编译Linux内核和应用程序。您可以从ARM官方网站下载适合您的交叉编译工具链。
编译内核:使用交叉编译工具链编译Linux内核。您可以从Linux内核官方网站下载最新版本的内核源代码,并使用交叉编译工具链进行编译。编译完成后亩尘,将内核镜像文件复制到ARM Cortex-A9的启动设备中。
配置文件系统:在ARM Cortex-A9上运行Linux操作系绝耐敏统需要一个文件系统。您可以使用BusyBox等工具来创建一个最小的文件系统。将文件系统复制到并枝ARM Cortex-A9的启动设备中。
启动Linux操作系统:将启动设备插入ARM Cortex-A9,并将其连接到计算机。使用串口或SSH等工具连接到ARM Cortex-A9,并启动Linux操作系统。如果一切正常,您应该能够登录到Linux系统并使用它作为服务器。
配置服务器:根据您的需求配置Linux服务器。您可以安装Web服务器、数据库服务器、FTP服务器等,以满足您的需求。
⑺ 如何在安卓系统上使用arm-linux-gdb调试内核
1,先下载最新版本的gdb源代码包,我使用的是gdb-7.6.tar.gz,使用tar命令进行解包(tar -xvzf gdb-7.6.tar.gz),cd进gdb-7.6/gdb目录,使用vi找到remote.c中的如下代码:
if(buf_len > 2 * rsa->sizeof_g_packet)
error(_("Remote 'g' packet reply is too long: %s"),rs->buf);
将上面两行注释掉,添加如下代码
if(buf_len > 2 * rsa->sizeof_g_packet)
{
rsa->sizeof_g_packet = buf_len;
for(i = 0; i < gdbarch_num_regs(gdbarch); i++)
{
if(rsa->regs[i].pnum == -1)
continue;
if(rsa->regs[i].offset >= rsa->sizeof_g_packet)
rsa->regs[i].in_g_packet = 0;
else
rsa->regs[i].in_g_packet = 1;
}
}
使用如下命令对代码进行配置、编译和安装
./configure --target=arm-linux --prefix=/usr/local/arm-gdb -v
make
make install
2,gdbserver使用android4.2模拟器中自带的版本(v7.1)
3,将NDK编译好的C/C++可执行程序,上传到模拟器中/data/test目录下,假设可执行程序的名称为testHello。
4,使用命令:gdbserver :7000 /data/test/testHello 启动模拟器端的调试。
5,启动arm-linux-gdb之前,使用vi打开~/.bash_profile文件,在其中添加:
export PATH=$PATH:/usr/local/arm-gdb/bin,以便在程序的其他目录可以直接启动arm-linux-gdb程序
6,cd至ndk编译好的testHello文件所在目录
7,使用如下命令进行端口映射:adb forward tcp:7000 tcp:7000,将模拟器的7000端口和本机的7000端口进行映射
8,使用命令:arm-linux-gdb testHello启动gdb调试
9,使用target remote :7000 链接模拟器中gdbserver启动的服务。
10,自此,我们就可以使用gdb命令进行代码调试了。
⑻ 请简述armlinux内核启动流程
能流动过程,正应该是会有一个专门的流动,这样的话才能更好今年取得,所以这个还是要注意的。
⑼ linux编译内核步骤
一、准备工作
a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/moles/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/moles/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
⑽ 求嵌入式linux开发详细流程(步骤)
1.首先,建立交叉编译环境:交叉编译是指:在PC机上编译,在目标板上执行,我PC是linux+ arm-elf-gcc编译器.扳子是ARM3000.板子上的系统是uclinux,这时一个剪裁的很小的实时嵌入式linux操作系统.推荐使用这个.
2.然后就是你写程序喽,不过注意可能有些库函数不能用,因为哪个编译器稍微受限一点,不是所由的c库函数都支持,不过一般开发的都有.
3.连起你的主机和开发板,这个你会不?要连两个:串口(用来控制板子)和以太口(用来下载程序),我们板子上这些外设都有,你要使没有可以用其他的口代替传程序,但串口可是该有的阿!
4.在你主机上编译程序生成目标代码,建议用makefile文件来组织你的联编关系.
5.把生成代码下载到目标板执行调试.我是用的主机的NFS(网落文件)服务,下载到目标板的.
6.注:目标板是怎么控制的呢?是用串口控制的,可用minicom,设置好你要控制的串口,也应该是你连板子的那个.在命令行里敲上minicom,即进入minicom截面,开启你的板子,应该就是板子uclinux系统解压安装的画面了.然后用ifconfig eth0.....
配置ip,这个ip就是你板子的ip了,注意与主机一个网段.然后mount -t nfs 主机ip:/uclinux /板子上的一个目录,就把主机的 uclinux目录放到板子上了(这么说其实不合理,应该叫挂载). 然后找到你刚才一经编译好的哪个目标代码执行即可.
因不了解你的具体环境和配置,暂说这些,有问题可再联系:)