当前位置:首页 » 操作系统 » 算法算力分析

算法算力分析

发布时间: 2023-04-19 23:46:53

Ⅰ 过来了解下什么是“算力”

      最近接触一个基金名称里面有“算力”二字,本以为只是一个名字而已,不查不知道,一查吓一跳。“算力”竟然已经成为了一个火爆的新概念。

      算力,又称“计算力”,从狭义上看,算力就是数据的处理能力,是设备通过处理数据,实现特定结果输出的计算能力,算力数值越大,代表综合计算能力越强。从广义上看,算力可以表达为算力是数字经济时代新的生产力,是支撑数字经济发展的坚实基础,也将是国民经济发展的重要引擎。它广泛存在于计算机、手机、PC等硬件设备中,如果没有算力,这些软硬件都不能正常使用。算力已经成为了全球战略竞争新的聚焦点,一个国家算力水平的高低基本与经济发展水平呈正相关水平。因为数字经济时代的关键资源是数据、算力和算法,其中数据是新的生产资料,算力是新生产力,算法是新的生产关系,这些构成了数字经济时代最基本的生产基石。

        算力分为算力环境、算力规模和算力应用。其中算力环境是指网络环境和算力投入等因素,这些是为算力的发展提供坚实的支撑。算力规模包含基础算力、智能算力和超算能力,这些又分别提供基础通用计算、人工智能计算和科学工程计算。算力应用是主要包括消费应用和行业应用,消费和行业应用带来了对算力规模、算力能力等需求的快速提升,算力的进步会反向推动了应用。例如当前我们所接触和使用的5G、物联网、云计算、大数据、人工智能和区块链等等。

        算力已成为数字经济的新引擎,主要表现在哪些方面呢?

1、算力直接带动数字产业化的发展。在数字核心企业,例如亚马逊、微软、谷歌等等这些互联网行业昌亮,算力是投资最大的,这三个企业每个季度投入的资本支出总额超过250亿美元,基本都是用于布局大规模的数据中心,支撑着互联网技术加速向电商、服务业、支付等领域渗透。还有电子信息制造业、电信业、隐敏软件业等等,都是数字产业化发展的重要部分,和算力的发展息息相关。

2、算力直接赋能国民经济发展。随着我国5G覆盖率的不断提升,我国对算力的投资也在不断提升,据悉,2020年我国的IT支出规模是2万亿,直接带动经济总产出1.7万亿,间接带动经济总产出6.3万亿耐携宽,即在算力中每投入1元。会带动3—4元的经济产出。而且我国消费和应用算力的需求在迅猛增长,单单是互联网对于算力的需求就大概占整体算力的50%的份额,电信和金融领域对算力的应用也处于行业领先水平。

        总之,抓好算力的发展就是抓好数字经济与实体经济融合发展的机会,就是为“一带一路”合作做出贡献。抓好计算机产业链供应链的长板,就是将强了重要产品和核心技术之间的融合发展,增强我国内在的创新能力的发展。

Ⅱ 巧妇难为无米之炊,算力、算法和数据到底哪个更重要

虽然不能这么绝对的判断一定谁比谁重要,但在实际应用中很多时候的确是数据更加重要。有几方面的原因:

在很多问题中,算法的“好坏”在没有大量有效数据的支撑下是没有意义的。换句话说,很多算法得到的结果的质量完全取决于其和真实数据的拟合程度。如果没有足够的数据支撑、检验,设计算法几乎等于闭门造车。

很多算法会有一堆可调参数。这些参数的选择并没有什么标准可依,无非是扔给大量数据,看参数的变化会带来什么样的结果的变化。大量、有效的数据成为优化这类算法的唯一可行方法。

更极端的例子是,算法本身很简单,程序的完善全靠数据训练。比如神经网络。

对于很多成熟的算法,优化算法的增量改善通常远小于增大输入数据(这是个经济性的考虑)。

比如问题中举例的 Google。在它之前的搜索引擎已经把基于网页内容的索引算法做得很好了,要想有更大的改善需要换思路。PageRank 算法的采用大大增加了输入的数据量,而且链接数据本身对于网页排名相当关键(当然他们也做了大量算法的优化)。

相关介绍:

数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的的原始素材。

数据可以是连续的值,比如声音、图像,称为模拟数据,也可以是离散的,如符号、文字,称为数字数据。在计算机系统中,数据以二进制信息单元0、1的形式表示。

Ⅲ 最近经常听到有人说算力,到底什么是算力

就是计算的能力,多数是在游戏中说到这个词语,比如恐龙有钱里面。就有算力

Ⅳ 算力是什么

在通过“挖矿”得到比特币的过程中,我们需要找到其相应的解,而要找到其解,并没有固定算法,只能靠计算机随机的哈希碰撞。
一台矿机每秒钟能做多少次哈希碰撞,就是其“算力”的代表,单位写成hash/s。
算力可以简单的理解为计算能力。目前主流的矿机为14T左右的计算量级,即一台矿机就能每秒做至少1.4*10的13次方次哈希碰撞,我们可以说,这一台14T规格的矿机就有14T的算力。矿工所掌握的所有矿机占比特币全网总算力的百分比是多少,就代表TA在这10分钟竞争中能够获胜的概率就是多少。
举个例子,如果比特币现在全网的算力是100,而某个矿工拥有10的算力,那么TA每次竞争记账成功的概率就是1/10。

Ⅳ 什么是算力

算力指计算能力,指的是在通过“挖矿”得到比特币的租尘专业术语,
像挖弊桥禅易矿业出售的各种矿机消仔,在算力方面都很高,能耗也低,可以去咨询一下。

Ⅵ 工业智能的技术整体遵循什么和算法三要素的逻辑

工业智能的技术整体上遵循人工智能的数据、算力和算法三要素的逻辑。包含智能算力、工业数据、智能算法和智能应用四大模块,以工业大神猜数据系统的工业数轿锋据为基础,依托硬件基础能力和训练、推理运行框架,完成工业数据建模和分析。

模型的建立

好利科技:控股子公司合肥曲速从事GPU芯片、ADAS视觉芯片的研发和销售,GPU芯片仍处于研发当中。

Ⅶ 算力算法数据的概念

算力就是计算机进行矩阵或数学运算的能力,每秒能够计算多少次矩阵运算。
它可以根据用户行为数据进行计算给予用户更多的便捷,从而让用户感知到它更了解自己

Ⅷ 算法相对论|关于人工智能的产业化之路的三点思考

彭嘉昊

在过去的2021年,我们见证了人工智能这个细分行业的起起伏伏,有些企业长期亏损乃至濒临破产,有些企业顺利获得融资或成功上市,可谓几家欢喜几家愁。但纵观现在国内人工智能的产业化之路,总是无法回避一个现实的问题,即“人工智能企业究竟离盈利还有多远?”诚然人工智能领域的研发工作需要巨大的投入,但所有的研发投入只有在产业化的落地场景中才能实现真正的商业价值,脱离了现实的产业需求,人工智能只能停留在技术本身。

目前,人工智能的产业化发展的3个路径:(1)AI+产业,即人工智能的技术型公司掌握某种人工智能技术后,向产业化的具体场景落地。比如商汤 科技 、云天励飞、旷世 科技 等知名人工智能公司都是采取的这条路径。(2)产业+AI,即由某一细分产业里的公司,尤其是头部大型企业作为主导力量,主动引入人工智能技术完成升级。比如平安保险、、顺丰快递等细分领域的大型企业自身的产业升级。(3)产学研成果转化,即由高校和科研机构为主导,主动面向市场的科研成果转化道路。近些年各大顶尖高校都建立了人工智能研究院,诸如北京、上海、深圳等城市也有很多政府背景的人工智能科研和成果转化平台。

笔者从2020年以来持续走访了上百家人工智能企业及科研机构,就在行业里的所见所闻,结合自己的想法,谈一下我对于人工智能的产业化之路的思考。

一、“AI+产业”的道路已经进入平台期

“AI+产业”的模式,主要指人工智能的技术型公司通过技术先行,然后寻找合适的业务场景实现商业价值。这条路可以借鉴移动互联网的发展历程,诸如淘宝、滴滴这样的互联网企业,都是通过技术和商业模式创新,发现了一个0-1的全新产业。我们曾经也认为人工智能的技术型公司可以通过0-1的技术突破,借鉴移动互联网的经验,广泛覆盖到各行各业的细分场景中。但除了人脸识别等少数几个场景外,人工智能的技术型公司并没有复制 科技 前辈在移动互联网的成功。

其中的原因有很多,我们并不能将其简单归咎于市场、资本或团队本身,笔者认为根源在于人工智能技术本身进入了一个进步相对缓慢的平台期了,我们拿人工智能的三大核心要素:算力、算法和数据来对应分析。

我们先说算力的问题,根据中国信息通信研究院在2021年《中国算力发展指数白皮书》的分析,虽然近些年基础算力、智能算力和超算算力都有很大程度的增长,未来5年全球的增速甚至超过50%,但与日益复杂的算法模型和快速增长的现实需求而言,仍然存在较大的缺口。同时,存算一体架构、量子计算、光子计算和类脑计算芯片尚处于实验室的研发阶段,离大规模商业化还有较长的时间,无法以技术革命的方式实现跨越式发展。虽然,诸如商汤 科技 、华为等头部公司采取了建立人工智能计算中心(AIDC)的方式,来满足未来智能计算需求的快速增长;我国神威、天河、曙光三台E级超算系统的研制工作也在逐步推进,很多国内的硬件公司着手计算机硬件的国产化替代。但从短期来看,算力将会是一个制约人工智能技术发展的现实困难。

我们再说到算法,算法表面上是计算机技术,但就本质抽离分析它是个数学问题。近些年数学领域还是有很多发展,比如无限函数计算等,但在计算机领域的发展速度相对而言没有那么的快。就算法这一特定领域的发展,中美最顶级的算法之间目前并没有代差。虽然层算法需要投入海量的资金进行研发,但是就应用层来说,企业完全可以自己下载Gitub或OpenAI的开源代码,或者使用网络、阿里、腾讯等互联网大厂的现有技术方案,从而大大降低技术应用的门槛。在市场竞争的层面上,人工智能技术型公司并不必然比传统互联网公司,甚至处于数字化转型的传统企业更具有优势。

另外一个关键要素就是数据,我国从2020年开始就逐步收紧了数据安全相关的管理,《个人信息保护法》、《数据安全法》以及九部委《关于加强互联网信息服务算法综合治理的指导意见》的陆续出台,使得人工智能的技术型公司获得数据的难度越来越,除非他们能够深入到业务的细分场景中,否则很难像过去那样获得训练算法模型的大规模数据。而这些“喂养”算法模型的数据,大都掌握在产业里的公司,尤其是大型公司的手中。这些大型公司无论是处于商业目的,还是自身业务安全性的考虑,几乎很难同人工智能的技术型公司开展合作,这也造成人工智能的技术型公司在产业化的道路上困难重重。

二、“产业+AI”和产学研成果转化的机遇

“产业+AI”的路径,属于产业里的企业自发性升级换代的过程,我们可以将其归纳进企业数字化转型的进程。产业里的企业为了适应市场竞争,会主动寻求与人工智能领域的技术型公司或者研究机构进行合作,甚至自己建立团队完成研发工作。对于大部分产业里的企业来说,他们面对的并不是0-1的全新市场,往往是在既有的红海市场中竞争,这种长期在产业内的拼搏经历,使得他们在人工智能的产业化上具备以下两大独特优势:

1. 掌握了大量特定生产场景下的专业知识和数据资料:我们一般称其为行业knowhow,比如化工材料的配方或某种特殊的生产工艺流程等。这种行业knowhow往往是企业的核心机密,在一些数据采集封闭、生产流程保密的领域,往往只有少数几家企业可以获得足够训练人工智能模型的专业知识和数据资料。所以,很多产业里的企业在寻找技术合作方时,会对侵略性较强的技术型公司比较排斥,往往要求技术型公司提交算法源代码,目的在于避免培养潜在竞争对手。

2. 了解真实的交易和应用场景:比如怎样建立可靠的供应链,怎样探析市场的情报信息,怎样建立全新的商业模式和盈利模式等。这些内容看似都属于业务相关的范畴,但却是技术型公司的痛点,几乎90%的人工智能公司都死在了打磨商业模式、寻找应用场景的道路上。但对于产业里的企业来说,敏锐捕捉市场机会并从产业里赚到钱,是他们与生俱来的天然能力,所有不具备这种能力的企业都在过去的市场竞争中淘汰掉了。

随着人工智能技术准入门槛的降低,大量传统企业与人工智能技术的适配将更加便捷,未来每一家企业都具备成为“人工智能+公司”的潜质。相信随着国家新基建和数字化转型工作的不断深化,在各行各业里都会出现“产业+AI”的明星企业。

在人工智能的产业化之路上,少不了高校和科研机构的参与,对于产业里的企业来说,高校和科研机构可以很好补充其自身研发能力的不足。目前,我国的产学研成果转化的之路并不十分顺畅,虽然国家每年投入了大量科研经费,但由于学术、科研同商业、市场的差异巨大,高校和科研机构在商业判断和市场嗅觉等方面总显得不太“接地气”,更多的成果停留在实验室里很难走出去,面临“酒香也怕巷子深”的现实窘境。

另外,高校和科研机构往往在工程能力也有所欠缺,虽然容易聚集高层次的顶尖人才,但缺乏实际操作的操盘型业务能手。正因为强于研发而弱于市场,高校和科研机构往往更愿意将 科技 成果以出售、技术入股或收益分成的方式与产业里的企业进行合作,而不是自己开拓市场。与人工智能的技术型公司相比,高校和科研机构有着大量国家基础科研经费的保障,对于本就容易聚集人才的高校和科研机构来说,很多人工智能的技术型公司而言很复杂的技术,对于高校和科研机构来说并不困难。随着国家《科学技术进步法》的修订,科研人员参与到成果转化的途径也将更通畅,一旦企业找到适合自身的成果转化路径,就可以很好的与高校和科研机构建立“产业+技术”的联合。可以预见,未来各类新型技术和成果转化平台将持续涌现,作为技术与市场的桥梁。

三、以产业需求出发,以产业结果为验证标准

人工智能行业的发展变化很快,即使在产业内的从业人员也免不了持续性、高强度的学习和研究。各行各业的专家在跨到人工智能这个领域的时候,可能都需要经历持续性“回头看”的过程。笔者在2020年参与深圳特区人工智能立法的时候,关于“什么是人工智能”的界定,现在看起来内涵和外延都不充分。过去,我们曾经认为人工智能就是模拟人的智能,但随着近些年的发展,我们发现机器在模拟人的智能上出现了很多痛点,但在模拟昆虫、动物的智能上反而进展很快,很多成果应用在障碍躲避、行为预判等诸多领域。于是,我们发现人工智能并不能单纯界定为“模拟人的智能”,而应当是“人造的智能”。显然,当时几乎所有的立法专家对于人工智能的基础理解并不全面和前瞻。

人工智能学界有一个着名的猴子上树的故事:我们不能认为基于当下在人工智能领域的技术进步,都是为通用人工智能的到来添砖加瓦;这正如我们不能认为一只猴子上了树,就意味着它向登月迈了一大步一样。在人工智能的产业化之路上,我们必须保持着谦虚、务实的精神,一切从产业的需求出发,一切以产业的实际结果为验证标准。任何一种技术或者商业模式的验证,都有自己的时间窗口,当市场机遇的红利期错过后,再想实现企业的快速发展就非常困难了,势必面临更加激烈的肉搏战。

与人工智能技术的发展一样,产业化的道路总是“看”起来容易,“做”起来难。虽然我们不提倡以成败论英雄,但在人工智能的产业化道路上,能够解决真实问题、拿到客观结果,才是企业家需要思考的核心问题。对于每一个产业里的专家来说,与其采取一种“预判式”的论证,执着于向其他人说明自己了解的知识,远不如切实在产业里面做出现实案例更具有说服力。未来各行各业的每一家企业都是“人工智能+公司”,愿与行业里的同仁一起共同成长、见证人工智能产业化之路的发展。(彭嘉昊系上海人工智能研究院数字化治理中心主任)

校对:栾梦

Ⅸ 挖矿算力怎么计算

首先,算力代表的是矿机每秒的运算次数,如达到 1 次 /s ,则对应算力为 1H 。因此知道挖币矿机的运作时间与运算次数即可计算其算力。算力的单位是每千位一变化,最小单位 H 为 1 次, 1K=1000H,1G=1000K,1T=1000G,1P=1000T,1E=1000P 。大热币种比特币在各地的挖矿算力不完全一致,但基本保持在 24.5E 上下,至少要拥有 150 万台计算机才能达到这一算力。并且不同的数字货币对挖矿方式(算法)的选择也有所区分,因此比较不同货币的算力是不可比的。

不同币种间的算力


不同的币种挖矿选择的算法可能会有所不同,如以太坊使用 Ethash 算法,比特币是 sha256 算法,莱特币是 scrypt 算法等。不同算法对算力的影响就像 6 位数字密码与 12 位字母和数字密码解码的区别,实际情况还要比这个要复杂的多。两种密码的解码要求不同,那么尝试解码的速度也会有较大差距。因此,不同的币种间的算力是没有任何关系的。

Ⅹ 一文了解以太坊挖矿算法及算力规模2020-09-09

以太坊网络中,想要获得以太坊,也要通过挖矿来实现。当前以太坊也是采用POW共识机制,但是与比特币的POW挖矿有点不一样,以太坊挖矿难度是可以调节的。以太坊系统有一个特殊的公式用来计算之后的每个块的难度。如果某个区块比前一个区块验证的更快,以太坊协议就会增加区块的难度。通过调整区块难度,就可以调整验证区块所需的时间。

以太坊采用的是Ethash 加密算法,在挖矿的过程中,需要读取内存并存储 DAG 文件。由于每一次读取内寸的带宽都是有限的,而现有的计算机技术又很难在这个问题上有质的突破,所以无论如何提高计算机的运算效率,内存读取效率仍然不会有很大的改观。因此,从某种意义上来说,以太坊的Ethash加密算法具有“抗ASIC性”。

加密算法的不同,导致了比特币和以太坊的挖矿设备、算力规模差异很大。

目前,比特币挖矿设备主要是专业化程度非常高的ASIC 矿机,单台矿机的算力最高达到了 112T/s(神马M30S++矿机),全网算力的规模达到139.92EH/s。

以太坊的挖矿设备主要是显卡矿机和定制GPU矿机,专业化的ASIC矿机非常少,一方面是因为以太坊挖矿算法的“抗 ASIC 性”提高了研发ASIC矿机的门槛,另一方面是因为以太坊升级到2.0之后共识机制会转型为PoS,矿机无法继续挖。

和ASIC矿机相比,显卡矿机在算力上相差了2个量级。目前,主流的显卡矿机(8卡)算力约为420MH/s,比较领先的定制GPU矿机算力约在500M~750M,以太坊全网算力约为235.39TH/s。

从过去两年的时间维度上看,以太坊的全网算力增长相对缓慢。

以太坊协议规定,难度的动态调整方式是使全网创建新区块的时间间隔为15秒,网络用15秒时间创建区块链,这样一来,因为时间太快,系统的同步性就大大提升,恶意参与者很难在如此短的时间发动51%(也就是半数以上)的算力去修改历史数据。

热点内容
ftp登陆指定用户名和端口号 发布:2025-09-13 01:34:37 浏览:656
运行守护怎么设置安卓 发布:2025-09-13 01:32:37 浏览:945
tar解压了 发布:2025-09-13 01:10:41 浏览:115
viplinux 发布:2025-09-13 01:04:40 浏览:650
算法与数据结构面试 发布:2025-09-13 00:59:09 浏览:800
phpconfigure 发布:2025-09-13 00:50:17 浏览:806
的asp有数据库 发布:2025-09-13 00:41:41 浏览:312
怎么解压r 发布:2025-09-13 00:40:50 浏览:911
hoco蓝牙耳机怎么配对安卓手机 发布:2025-09-13 00:12:29 浏览:859
1c语言 发布:2025-09-13 00:11:42 浏览:74