当前位置:首页 » 操作系统 » 人脸表情数据库

人脸表情数据库

发布时间: 2023-04-29 04:58:48

⑴ 深度学习人脸表情识别不灵敏

您好,深度学习人脸表情识别不灵敏的问题,可能是由于以下原因造成的:

1. 数据集不够全面:深度学习模型需要在大量、多样化的数据集上进行训练,如果数据集不包含足够多种类的表情,识别准确率就会下降。

2. 参数调整不当:深度学习模型中有很多的参数需要调整,比如卷积核大小、stride等等。如果这些参数的值设置不当,可能导致模型性能下降。

3. 模型过于简单:深度学习模型的复杂程度也会影响其准确率。如消枝果模型过于简单,可能无法捕捉到人脸表情的微妙变化。

解决这个问题的方法可以从以下几个方面入手:

1. 扩充数据集:获取更丰富的戚桥灶人脸表情数据集,提高模型的泛化能力。

2. 更改网络架构:选择合适的神经网络结构,对其中的参数进行调整,提高识别效果。

3. 引入注意力机制:通过引入注意力机制,引导模型把注意力集中在关键区域,提高识别的准确率。

希望以上内容对您高扮有所帮助。

⑵ 怎样建立人脸表情数据库系统

介东西你要分人种、性别、年龄、脸型、表情、情绪等各种属性

可以动态的生成各种表情的图片

做起来应该是很好玩地说

⑶ 怎样使用OpenCV进行人脸识别

友情提示,要看懂代码前,你得先知道OpenCV的安装和配置,会用C++,用过一些OpenCV函数。基本的图像处理和矩阵知识也是需要的。[gm:我是箫鸣的注释]由于我仅仅是翻译,对于六级才过的我,肯定有一些翻译错的或者不当的地方,所以请大家纠错。

1.1.介绍Introction

从OpenCV2.4开始,加入了新的类FaceRecognizer,我们可以使用它便捷地进行人脸识别实验。本文既介绍代码使用,又介绍算法原理。(他写的源代码,我们可以在OpenCV的opencv\moles\contrib\doc\facerec\src下找到,当然也可以在他的github中找到,如果你想研究源码,自然可以去看看,不复杂)目前支持的算法有

Eigenfaces特征脸createEigenFaceRecognizer()

Fisherfaces createFisherFaceRecognizer()

LocalBinary Patterns Histograms局部二值直方图 createLBPHFaceRecognizer()

下面所有的例子中的代码在OpenCV安装目录下的samples/cpp下面都能找到,所有的代码商用或者学习都是免费的。1.2.人脸识别Face Recognition

对人类来说,人脸识别很容易。文献[Tu06]告诉我们,仅仅是才三天的婴儿已经可以区分周围熟悉的人脸了。那么对于计算机来说,到底有多难?其实,迄今为止,我们对于人类自己为何可以区分不同的人所知甚少。是人脸内部特征(眼睛、鼻子、嘴巴)还是外部特征(头型、发际线)对于人类识别更有效?我们怎么分析一张图像,大脑是如何对它编码的?David Hubel和TorstenWiesel向我们展团卖凯示,我们的大脑针对不同的场景,如线、边、角或者运动这些局部特征有专门的神经细胞作出反应。显然我们没有把世界看成零散的块块,我们的视觉皮层必须以某种方式把不同的信息来源转化成有用的模式。自动人脸识别就是如何从一幅图像中提取有意义的特征,把它们放入一种有用的表示方式,然配弯后对他们进行一些分类。基于几何特征的人脸的人脸识别可能是最直观的方法来识别人脸。第一个自动人脸识别系统在[Kanade73]中又描述:标记点(眼睛、耳朵、鼻子等的位置)用来构造一个特征向量(点与点之间的距离、角度等)。通过计算测试和训练图像的特征向量的欧氏距离来进行识别。这样的方法对于光照变化很稳健,但也有巨大的缺点:标记点的确定是很复杂的,即使是使用最先进的算法。一些几何特征人脸识别近期工作在文献[Bru92]中有描述。一个22维的特征向量被用在一个大数据库上,单靠几何特征不能提供足够的信息用于人脸识别。特征脸方法在文献[TP91]中有描述,他描述了一个全面的方法来识别人脸:面部图像是一个点,这个点是从高维图像空间找到它在低维空间的表示,这样分类变得很简单。低维子空间低维是使用主元分析(Principal Component Analysis,PCA)找到的,它可以找拥有最大方差的那个轴。虽然这样的转换是从最佳重建角度考虑的,但是他没有把标签问题考虑进去。[gm:读懂这段需要一些机器学习知识]。想象一个情况,如果变化是基于外部来源,比如光照。轴的最大方差不一定包含任何有鉴别性的信息,因此此时的分类是不可能的。因此,一个使用线性鉴别(Linear Discriminant Analysis,LDA)的特定类塌唤投影方法被提出来解决人脸识别问题[BHK97]。其中一个基本的想法就是,使类内方差最小的同时,使类外方差最大。

近年来,各种局部特征提取方法出现。为了避免输入的图像的高维数据,仅仅使用的局部特征描述图像的方法被提出,提取的特征(很有希望的)对于局部遮挡、光照变化、小样本等情况更强健。有关局部特征提取的方法有盖伯小波(Gabor Waelets)([Wiskott97]),离散傅立叶变换(DiscreteCosinus Transform,DCT)([Messer06]),局部二值模式(LocalBinary Patterns,LBP)([AHP04])。使用什么方法来提取时域空间的局部特征依旧是一个开放性的研究问题,因为空间信息是潜在有用的信息。

1.3.人脸库Face Database

我们先获取一些数据来进行实验吧。我不想在这里做一个幼稚的例子。我们在研究人脸识别,所以我们需要一个真的人脸图像!你可以自己创建自己的数据集,也可以从这里(http://face-rec.org/databases/)下载一个。

AT&TFacedatabase又称ORL人脸数据库,40个人,每人10张照片。照片在不同时间、不同光照、不同表情(睁眼闭眼、笑或者不笑)、不同人脸细节(戴眼镜或者不戴眼镜)下采集。所有的图像都在一个黑暗均匀的背景下采集的,正面竖直人脸(有些有有轻微旋转)。YaleFacedatabase A ORL数据库对于初始化测试比较适合,但它是一个简单的数据库,特征脸已经可以达到97%的识别率,所以你使用其他方法很难得到更好的提升。Yale人脸数据库是一个对于初始实验更好的数据库,因为识别问题更复杂。这个数据库包括15个人(14个男人,1个女人),每一个都有11个灰度图像,大小是320*243像素。数据库中有光照变化(中心光照、左侧光照、右侧光照)、表情变化(开心、正常、悲伤、瞌睡、惊讶、眨眼)、眼镜(戴眼镜或者没戴)。

坏消息是它不可以公开下载,可能因为原来的服务器坏了。但我们可以找到一些镜像(比如 theMIT)但我不能保证它的完整性。如果你需要自己剪裁和校准图像,可以阅读我的笔记(bytefish.de/blog/fisherfaces)。ExtendedYale Facedatabase B 此数据库包含38个人的2414张图片,并且是剪裁好的。这个数据库重点是测试特征提取是否对光照变化强健,因为图像的表情、遮挡等都没变化。我认为这个数据库太大,不适合这篇文章的实验,我建议使用ORL数据库。

1.3.1. 准备数据
我们从网上下了数据,下了我们需要在程序中读取它,我决定使用CSV文件读取它。一个CSV文件包含文件名,紧跟一个标签。

/path/to/image.ext;0

假设/path/to/image.ext是图像,就像你在windows下的c:/faces/person0/image0.jpg。最后我们给它一个标签0。这个标签类似代表这个人的名字,所以同一个人的照片的标签都一样。我们对下载的ORL数据库进行标识,可以获取到如下结果:

./at/s1/1.pgm;0
./at/s1/2.pgm;0
...
./at/s2/1.pgm;1
./at/s2/2.pgm;1
...
./at/s40/1.pgm;39
./at/s40/2.pgm;39
想象我已经把图像解压缩在D:/data/at下面,而CSV文件在D:/data/at.txt。下面你根据自己的情况修改替换即可。一旦你成功建立CSV文件,就可以像这样运行示例程序:

facerec_demo.exe D:/data/at.txt
1.3.2 Creating the CSV File

你不需要手工来创建一个CSV文件,我已经写了一个Python程序来做这事。

[gm:说一个我实现的方法

如果你会cmd命令,或者称DOS命令,那么你打开命令控制台。假设我们的图片放在J:下的Faces文件夹下,可以输入如下语句:

J:\Faces\ORL>dir /b/s *.bmp > at.txt
然后你打开at.txt文件可能看到如下内容(后面的0,1..标签是自己加的):

。。。。
J:\Faces\ORL\s1\1.bmp;0
J:\Faces\ORL\s1\10.bmp;0
J:\Faces\ORL\s1\2.bmp;0
J:\Faces\ORL\s1\3.bmp;0
J:\Faces\ORL\s1\4.bmp;0
J:\Faces\ORL\s1\5.bmp;0
J:\Faces\ORL\s1\6.bmp;0
J:\Faces\ORL\s1\7.bmp;0
J:\Faces\ORL\s1\8.bmp;0
J:\Faces\ORL\s1\9.bmp;0
J:\Faces\ORL\s10\1.bmp;1
J:\Faces\ORL\s10\10.bmp;1
J:\Faces\ORL\s10\2.bmp;1
J:\Faces\ORL\s10\3.bmp;1
J:\Faces\ORL\s10\4.bmp;1
J:\Faces\ORL\s10\5.bmp;1
J:\Faces\ORL\s10\6.bmp;1
。。。。
自然还有c++编程等方法可以做得更好,看这篇文章反响,如果很多人需要,我就把这部分的代码写出来。(遍历多个文件夹,标上标签)

]

特征脸Eigenfaces

我们讲过,图像表示的问题是他的高维问题。二维灰度图像p*q大小,是一个m=qp维的向量空间,所以一个100*100像素大小的图像就是10,000维的图像空间。问题是,是不是所有的维数空间对我们来说都有用?我们可以做一个决定,如果数据有任何差异,我们可以通过寻找主元来知道主要信息。主成分分析(Principal Component Analysis,PCA)是KarlPearson (1901)独立发表的,而 Harold Hotelling (1933)把一些可能相关的变量转换成一个更小的不相关的子集。想法是,一个高维数据集经常被相关变量表示,因此只有一些的维上数据才是有意义的,包含最多的信息。PCA方法寻找数据中拥有最大方差的方向,被称为主成分。

算法描述Algorithmic Description
令 2 表示一个随机特征,其中 3 .

计算均值向量 4
5


计算协方差矩阵 S
6


计算 的特征值7 和对应的特征向量 8 9


对特征值进行递减排序,特征向量和它顺序一致. K个主成分也就是k个最大的特征值对应的特征向量。
x的K个主成份:

10其中11 .

PCA基的重构:

12其中 13 .

然后特征脸通过下面的方式进行人脸识别:

A. 把所有的训练数据投影到PCA子空间

B. 把待识别图像投影到PCA子空间

C. 找到训练数据投影后的向量和待识别图像投影后的向量最近的那个。

还有一个问题有待解决。比如我们有400张图片,每张100*100像素大小,那么PCA需要解决协方差矩阵 14的求解,而X的大小是10000*400,那么我们会得到10000*10000大小的矩阵,这需要大概0.8GB的内存。解决这个问题不容易,所以我们需要另一个计策。就是转置一下再求,特征向量不变化。文献 [Duda01]中有描述。

[gm:这个PCA还是自己搜着看吧,这里的讲的不清楚,不适合初学者看]OpenCV中使用特征脸Eigenfaces in OpenCV
给出示例程序源代码

#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

usingnamespace cv;
usingnamespace std;

static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// 创建和返回一个归一化后的图像矩阵:
Mat dst;
switch(src.channels()) {
case1:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC1);
break;
case3:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC3);
break;
default:
src.To(dst);
break;
}
return dst;
}
//使用CSV文件去读图像和标签,主要使用stringstream和getline方法
staticvoid read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator =';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message ="No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty()&&!classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}

int main(int argc, constchar*argv[]) {
// 检测合法的命令,显示用法
// 如果没有参数输入则退出!.
if (argc <2) {
cout <<"usage: "<< argv[0]<<" <csv.ext> <output_folder> "<< endl;
exit(1);
}
string output_folder;
if (argc ==3) {
output_folder = string(argv[2]);
}
//读取你的CSV文件路径.
string fn_csv = string(argv[1]);
// 2个容器来存放图像数据和对应的标签
vector<Mat> images;
vector<int> labels;
// 读取数据. 如果文件不合法就会出错
// 输入的文件名已经有了.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr <<"Error opening file \""<< fn_csv <<"\". Reason: "<< e.msg << endl;
// 文件有问题,我们啥也做不了了,退出了
exit(1);
}
// 如果没有读取到足够图片,我们也得退出.
if(images.size()<=1) {
string error_message ="This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// 得到第一张照片的高度. 在下面对图像
// 变形到他们原始大小时需要
int height = images[0].rows;
// 下面的几行代码仅仅是从你的数据集中移除最后一张图片
//[gm:自然这里需要根据自己的需要修改,他这里简化了很多问题]
Mat testSample = images[images.size() -1];
int testLabel = labels[labels.size() -1];
images.pop_back();
labels.pop_back();
// 下面几行创建了一个特征脸模型用于人脸识别,
// 通过CSV文件读取的图像和标签训练它。
// T这里是一个完整的PCA变换
//如果你只想保留10个主成分,使用如下代码
// cv::createEigenFaceRecognizer(10);
//
// 如果你还希望使用置信度阈值来初始化,使用以下语句:
// cv::createEigenFaceRecognizer(10, 123.0);
//
// 如果你使用所有特征并且使用一个阈值,使用以下语句:
// cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
model->train(images, labels);
// 下面对测试图像进行预测,predictedLabel是预测标签结果
int predictedLabel = model->predict(testSample);
//
// 还有一种调用方式,可以获取结果同时得到阈值:
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// 这里是如何获取特征脸模型的特征值的例子,使用了getMat方法:
Mat eigenvalues = model->getMat("eigenvalues");
// 同样可以获取特征向量:
Mat W = model->getMat("eigenvectors");
// 得到训练图像的均值向量
Mat mean = model->getMat("mean");
// 现实还是保存:
if(argc==2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// 现实还是保存特征脸:
for (int i =0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// 得到第 #i个特征
Mat ev = W.col(i).clone();
//把它变成原始大小,为了把数据显示归一化到0~255.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// 使用伪彩色来显示结果,为了更好的感受.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
// 显示或者保存:
if(argc==2) {
imshow(format("eigenface_%d", i), cgrayscale);
} else {
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// 在一些预测过程中,显示还是保存重建后的图像:
for(int num_components =10; num_components <300; num_components+=15) {
// 从模型中的特征向量截取一部分
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// 归一化结果,为了显示:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// 显示或者保存:
if(argc==2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
// 如果我们不是存放到文件中,就显示他,这里使用了暂定等待键盘输入:
if(argc==2) {
waitKey(0);
}
return0;
}

⑷ 人脸数据分析是什么

人脸数据分析是什么

人脸数据分析是什么,人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术,随着科技发展现在很多场所都用的到人脸分析,很多人还不清楚其中的原理是什么,那么就来了解一下人脸数据分析是什么吧。

人脸数据分析是什么1

一、人脸识别技术

完整的人脸识别系统一般包括人脸检测跟踪、人脸关键点定位、人脸属性分析、人脸验证、人脸识别、人脸聚类等模块。

1、人脸检测跟踪:

人脸检测跟踪技术提供快速、高准确率的人像检测功能。对背景复杂低质量的图片或百人人群监控视频,可以在移动设备和个人电脑上实现毫秒级别的人脸检测跟踪。

2、人脸关键点定位:

人脸关键点定位可以精确定位面部的关键区域位置,微秒级别眼,口,鼻轮廓等人脸106个关键点定位漏孙。该技术可适应一定程度遮挡和大角度侧脸,表情变化,遮挡,模糊,明暗变化等各种实际环境。

3、人脸属性分析:

提供准备的面部分析技术,准确识别10多种人脸属性大类,例如性别,年龄、种族、表情、饰品、胡须、面部动作状态等。可以用于广告定向投放或顾客信息分析,让你秒懂顾客户心。

4、人脸验证、识别、聚类:

人脸验证技术可被用于登录验证、身份识别等应用场景。给定人脸样本,毫秒级别检索大规模人脸数据库或监控视频,给出身份认证,实现身份和人脸绑定。

人脸识别技术可以自动识别出照片、视频流中的人脸身份,可以实现安防检查、VIP识别、照片自动圈人、人脸登录等功能能,在认证出96%的人脸时,误检率低于十万分之一。数十万人的人脸快速聚类,可用于基于人脸的智能相册以及基于合影的社交网络分析。让照片管理更直观,让社交关系更清晰。

二、智能广告大数据分析特点

1、精确统计进出店铺的客流量:

启动应用,显示人脸识别检测界面,通过人脸识别技术检测头肩、检测人脸、对人脸进行跟踪识别,提取人脸特征值,进行精准的人体判断,准确的识别用户人脸,基于人体跟踪,有效避免因徘徊、逗留引起的重复计数,从而达到精确统计进出店铺的客流量的数据。在统计客流量的同时展示店铺的广告宣传信息、店铺简介、特色产品、售后服务等相关信息。

2、精准分析入店客户:

通过人脸识别技术,主动分析每一位停留观看广告的年龄、性别、并实时上传至服务器,管理者通过对消费群体的数据分析,精准挖掘出店铺和产品主要面向的销售者群体属于哪一类人,从而改善产品设计、运营模式、推广方案,极大有利于提升店铺的利润和广告的回报率。

3、精确认识和挖掘VIP客户:

精确、实时识别VIP客户并推送用户信息至店员手机,VIP客户历史入店信息及购买记录一没念目了然,店员重点接待VIP客户大大提升店铺营业额。通过大数据分析挖掘回头客,提升客户提袋率及VIP客户转化率,系统自动识别并排除店员,不再误统计为客流,真正做到准确的返察链数据分析。

4、完备的报表:数据即事实 :

大数据分析并形成简洁、客观、精确的数据报表,直观的看到每日/月的客流量( 人数、人次)、客流人群分布(年龄、性别)、入店率、平均关注时间、提袋率(转化率),对店铺的客流量进行趋势分析(日、周、月),进行统一的广告效果分析,精准挖掘出每一个广告后面隐藏的客户数据,极大有利于广告制作和投放的精准营销,帮助商家精准定位有效客群,为投放商、制作方等相关企业提供可靠的数据参考,发现提高有效展示和回报率的关键。

5、大数据分析,驱动管理优化

通过大数据可以分析店铺什么产品最受关注、产品的目标客户群是哪些人、最受关注的产品是什么、单个产品为何有些销量高有些则低、VIP客户关注的是什么产品、什么区域受冷落、什么区域关注度比较高。

通过数据分析的结果优化店铺管理,找出最适合店铺的经营模式、消费者最关注的广告、转化率最高的产品、根据客户逛店路径分析热点区域,调整主打产品陈列引起客户关注度,改善店员服务过程中存在的不足,从宏观到细节进行优化,达到店铺的利益最大化。

6、 主动推送潜在客户,方便直接的提供业务帮助

将采集到的多用户信息进行聚类并分析得到统计数据,根据驻足观看的用户性别不同、年龄层次不同,1-2秒内切换广告内容,推送更针对性的产品广告信息。比如,为20-30岁的男性用户推送剃须刀、洗面奶等适合他们需求的广告,从而有效提高广告的关注效果,提高广告的传播和产品购买的`转化率。

人脸数据分析是什么2

人脸数据分析的应用价值

人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。

1、在人脸识别的设备上,除人脸识别区域外,设置固定的广告播放区域,使用多媒体信息发布系统,定时或不定时地轮播商家自定义的广告,比如商家简介、产品介绍、活动促销、联系方式等多媒体信息。

内容展现方式多种多样,可以是视频、图片、文字、流媒体等素材,让用户体验到现代化购物的感觉,智能化的液晶产品可以让店铺的整体美观度大大提升,顿刻显得高大上。

2、对于每一个广告投放商而言,广告效果的好坏直接关系到投入产出比,也决定着未来是否需继续投放。而对于广告制作方来说,什么样的广告最能吸引目标客户?提高有效传播率,他们需要足够的数据调研来为下一步广告制作提供依据。

为此,南翼基于人脸识别的智能广告大数据分析解决方案,为广告机提供广告效果分析解决方案,帮助商家精准定位有效客群,为投放商、制作方等相关企业提供可靠的数据参考,发现提高有效展示和回报率的关键,提升广告运营的价值。

3、除了人脸识别外,我们还提供手势识别技术,用户可以自由通过简单、通用的手势进行广告内容的切换,或者还可以在线玩一些有趣的游戏,从而提高用户的好感度,也可以通过完成商家指定的人脸表情赢得奖品等活动来增强商家与客户的互动性。

⑸ 如何提高fer2013plus数据集准确率

Fer2013Plus是一个包含35,887张人脸表情图族祥返像的人脸表情识别数据集。要提高其准确率,需要从以下几个方面入手兆饥:

1. 增宴缺加数据量:可以通过数据增强、收集更多的表情图片等方式来增加数据量,从而提高模型的准确率;
2. 改善模型结构:可以借鉴其他模型结构的设计,优化模型参数,改善模型的性能;
3. 调整超参数:在训练模型时,需要根据实际情况对模型的超参数进行合理的调整,以达到最佳的准确率;
4. 使用迁移学习:可以借鉴其他数据集上训练出的优秀模型,将其迁移到Fer2013Plus数据集上进行微调,以提高其准确率。

⑹ 人脸识别常用的人脸数据库有哪些

给你提供几个线索,数据都可以去数据堂下载。

1.FERET人脸数据库 -
由FERET项目创建,包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一.其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一

2.CMU-PIE人脸数据库
由美国卡耐基梅隆大学创建,包含68位志愿者的41,368张多姿态,光照和表情的面部图像.其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合

3.YALE人脸数据库
由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照,表情和姿态
的变化.

4. YALE人脸数据库B
包含了10个人的5,850幅多姿态,多光照的图像.其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析.由于采集人数较少,该数据库的进一步应用受到了比较大的限制

5. MIT人脸数据库
由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态,光照和大小的面部图像.

6. ORL人脸数据库
由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,
表情和面部饰物的变化.该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大.

7. BioID人脸数据库
包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

⑺ 爱用商城人脸识别出错

非常抱歉,爱用商城人脸识别出错。此类问题一般是由于以下原因造成的:
1. 摄像头及网络环境不稳定,导致识别效果不佳。
2. 使用时未将脸部放入摄像族掘头中,或者没有将脸部放在摄像头中心位置,导致脸部无法被正确识别。
3. 由于面部表情变化太快,或者遮挡面部,或者头发、眼镜等遮挡脸部,导致脸部无法被正确识别。
4. 识别环境光线过暗,或者过亮,导致识别效果不佳。
5. 使用时可能出现的网络中断、超时等情况,导致识别结果出错。
为了避免上述情况发生,建议使用时确保:
1. 摄像头及网络环境稳定可靠;含拿
2. 将脸部兆老核放入摄像头中,并将脸部放到摄像头中心位置;
3. 保持稳定的面部表情,并避免头发、眼镜等遮挡脸部;
4. 保持良好的自然光照环境;
5. 确保网络环境畅通,避免出现网络中断、超时等情况。

⑻ 是不是相似度越高人脸识别相似度越高

相似度超过72%就表示识别成功。
人脸识别技术,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。
人脸识别技术主要是通过人脸图像特征的提取与对比来进行的。人脸识别系统将提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而尘宴码狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
(8)人脸表情数据库扩展阅读:
3D人脸识别技术
3D人脸识别技术是人派哪脸识别重要发展发现。目前大部分的人脸识别应用的范畴限定在2D图像上。人脸实质上是一个立体模型,而2D人脸识别容易受到姿态、光照、表情等因素影响,是因为2D图像本身有一个缺陷,无法很好地表示深度信息。
如果说深度学习是从人的认知角度来理解人脸识别,那么3D技术就是从现实模型来祥伏反映人脸识别。
目前关于3D人脸识别方向的算法研究并没有2D人脸识别技术那么丰富和深入,许多因素限制了这项技术的发展。3D人脸识别往往需要特定的采集设备,如3D摄像机或双目摄像机。目前这类采集设备价格还比较昂贵,主要用于特定场景。
3D建模过程需要的计算量较大,对硬件要求较高,也限制了目前的应用。3D人脸识别数据库比较稀少,研究者缺少训练样本和测试样本,无法开展更深入的理论研究。随着未来芯片技术和传感器的发展,当计算能力不再收到制约,3D采集设备成本大幅下降的时候,3D人脸识别将取得重要突破。

⑼ 人脸识别的发展历史是怎样的

人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;

“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。

(9)人脸表情数据库扩展阅读:

人脸图像采集及检测

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。

人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

主流的人脸检测方法基于燃野胡以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。

人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类脊橘器的检测速皮拦度。

⑽ 求下载过cacd2000数据集,Adience数据集和IMDB-WIKI数据集的大神能分享到我的邮箱,不胜感激!!

公开人脸数据集
本页面收集到目前为止可以下载到的人脸数据库,可用于训练人脸深度学习模型。
人脸识别

数据库
描述
用途
获取方法

WebFace 10k+人,约500K张图片 非限制场景 链接
FaceScrub 530人,约100k张图片 非限制场景 链接
YouTube Face 1,595个人 3,425段视频 非限制场景、视频 链接
LFW 5k+人脸,超过10K张图片 标准的人脸识别数据集 链接
MultiPIE 337个人的不同姿态、表情、光照的人脸图像,共750k+人脸图像 限制场景人脸识别 链接 需购买
MegaFace 690k不同的人的1000k人脸图像 新的人脸识别评测集合 链接
IJB-A 人脸识别,人脸检测 链接
CAS-PEAL 1040个人的30k+张人脸图像,主要包含姿态、表情、光照变化 限制场景下人脸识别 链接
Pubfig 200个人的58k+人脸图像 非限制场景下的人脸识别 链接
人脸检测

数据库
描述
用途
获取方法

FDDB 2845张图片中的5171张脸 标准人脸检测评测集 链接
IJB-A 人脸识别,人脸检测 链接
Caltech10k Web Faces 10k+人脸,提供双眼和嘴巴的坐标位置 人脸点检测 链接
人脸表情

数据库
描述
用途
获取方法

CK+ 137个人的不同人脸表情视频帧 正面人脸表情识别 链接
人脸年龄

数据库
描述
用途
获取方法

IMDB-WIKI 包含:IMDb中20k+个名人的460k+张图片 和维基网络62k+张图片, 总共: 523k+张图片 名人年龄、性别 链接
Adience 包含2k+个人的26k+张人脸图像 人脸性别,人脸年龄段(8组) 链接
CACD2000 2k名人160k张人脸图片 人脸年龄 链接
人脸性别

数据库
描述
用途
获取方法

IMDB-WIKI 包含:IMDb中20k+个名人的460k+张图片 和维基网络62k+张图片, 总共: 523k+张图片 名人年龄、性别 链接
Adience 包含2k+个人的26k+张人脸图像 人脸性别,人脸年龄段(8组) 链接
人脸关键点检测

数据库
描述
用途
获取方法

数据库 描述 用途 获取方法
人脸其它

数据库
描述
用途
获取方法

CeleBrayA 200k张人脸图像40多种人脸属性 人脸属性识别 获取方法
GitHub:DeepFace

热点内容
excel的快速访问工具栏 发布:2025-05-17 09:14:58 浏览:1
android360源码 发布:2025-05-17 09:11:47 浏览:76
步科编程软件 发布:2025-05-17 09:09:18 浏览:824
ps4密码设置有什么要求 发布:2025-05-17 08:49:16 浏览:70
文本编译工具 发布:2025-05-17 08:47:47 浏览:3
phpc语言 发布:2025-05-17 08:45:30 浏览:806
苹果6s怎么设置4位密码 发布:2025-05-17 08:41:14 浏览:180
如何玩cf端游越南服务器 发布:2025-05-17 08:38:54 浏览:184
噪声的危害和控制设计脚本 发布:2025-05-17 08:22:29 浏览:474
esr算法 发布:2025-05-17 08:16:09 浏览:195