当前位置:首页 » 操作系统 » matlab算法代码

matlab算法代码

发布时间: 2023-04-30 18:46:51

A. 求用MP算法分解重建图像的matlab代码

这里是一维信号的重建:
%基于MP算法
clc;clear
%观测向量y的长度M=80,即采样率M/N=0.3
N=256;
K=15; %信号稀疏度为15
M=80; %
x = zeros(N,1);
q = randperm(N);
x(q(1:K)) =randn(K,1); %原始信号

%构造高斯测量矩阵,用以随机采样
Phi = randn(M,N)*sqrt(1/M);
for i = 1:N
Phi(:,i) = Phi(:,i)/norm(Phi(:,i));
end
y=Phi*x ; %获得线性测量

%用MP算法开始迭代重构
m=2*K; %总的迭代次数
r_n=y; % 残差值初始值
x_find=zeros(N,1); %x_find为MP算法恢复的信号

for times=1:m
for col=1:N
neiji(col)=Phi(:,col)'*r_n; %计算当前残差和感知矩阵每一列的内积
end
[val,pos]=max(abs(neiji)); %找出内积中绝对值最大的元素和它的对应的感知矩阵的列pos
x_find(pos)=x_find(pos)+neiji(pos); %计算新的近似x_find
r_n=r_n-neiji(pos)*Phi(:,pos); %更新残差
end

subplot(3,1,1);plot(x);title('target');
subplot(3,1,2);plot(x_find);title('reconstruct');
subplot(3,1,3);plot(r_n);title('残差');

B. 下图用matlab怎么编bp算法代码

%读取训练数据
[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150);
%特征值归一化
[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ;
%构造输出矩阵
s = length( class) ;
output = zeros( s , 3 ) ;
for i = 1 : s
output( i , class( i ) ) = 1 ;
end
%创建神经网络
net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 500 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
%开始训练
net = train( net, input , output' ) ;
%读取测试数据
[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150);
%测试数据归一化
testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ;
%仿真
Y = sim( net , testInput )
%统计识别正确率
[s1 , s2] = size( Y ) ;
hitNum = 0 ;
for i = 1 : s2
[m , Index] = max( Y( : , i ) ) ;
if( Index == c(i) )
hitNum = hitNum + 1 ;
end
end
sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )

看了你的数据,你至少要有的类标号吧,不知道你哪里是输入向量,哪里是输出向量

C. 求粒子群算法MATLAB完整代码

%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen = 200; % 进化次数
sizepop = 20; % 种群规模

Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;

%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end

% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值

%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop

% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;

%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;

% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end

% 适应度值
fitness(j) = fun(pop(j,:));
end

% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end

% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end

yy(i) = fitnesszbest;

end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');

fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;

D. 关于Niblack二值化算法matlab代码

for
i=1:r:Height
for
j=1:r:Width
block
=
imag(i:i+r-1,j:j+r-1);
%提取方块
m
=
mean2(block);
v
=
var(var(double(block)));
t
=
m
+
k
*
v;
block
=
double(block
>盯孙州
t);
%计算二值
imag(i:i+r-1,j:j+r-1)
=
block;
%放回方凯蔽凯岁块
end
end

E. 急求一份多目标遗传算法matlab代码!

我给你一个标准遗传算法程序供你参考:
该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear

%% 初始化遗传算法参数
%初始化参数
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间

lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围

indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体

%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];

%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x);
end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);
提问者评价
谢谢!

F. matlab中Boosting算法的代码是什么

先看这个结构里面的这些函数都是干什么用的,prob,概率。[1:keep],这里应该能大概看出来keep是整数,1:keep等价于1:1:keep,比如1:10,就是1,2,3,4,5,6,7,8,9,10。步长为1,从1到keep.右上角的',这个符号,表示转置,比如1:10,是一个1行10列的矩阵,通过转置变成10行一列。其中,sum([1:keep]),表示对这个矩阵(从1到keep求和),但是这个语句prob=flipud([1:keep]'/sum([1:keep]));里面总觉得缺少了一个.。prob=flipud([1:keep]'./sum([1:keep]));这样看来应该才能运行,我没尝试,在commandwindow里面直接做是可以的,但是在脚本文件里面做,可能会报错。这个和矩阵运算有关,暂且放在这里。然后到外部,这样我们知道了在第一行flipud()函数体里面,实际上是在用1到keep的每一个数,除以1到keep的和值,得到一个长度为keep的矩阵。值得注意的是,这个矩阵的和值为1,在下面会用到这一点。然后flipud()函数的作用,是把矩阵倒置,比如[1,3,4,5],使用flipud()之后变成[5,4,3,1]。注意,这个操作和sort()函数不同,这个只是把以前的顺序倒置,并不排序。从这里大概可以看出来,其实这个keep的值,等于chromosomes,染色体数量。这样,对于不同的染色体,配对概率就不一样了。从这里可以看出来,染色体配对概率应该是第一条最高,然后依次递减。然后计算或然率,cumsum(),进行累加求和,比如matlab中给出的例子,我们用[1,2,3]也可以写作1:3,来说,cumsum之后的结果是[1,3,6],也就是从第一个开始加和,一直加到这一项。这一点,非常类似高斯函数积分的感觉。用来计算概率cumulativedistribution。然后odd变量,把0加在了cumsum结果的前面,比如刚刚的例子[0cumsum([1,2,3])],就变成了[0,1,3,6]。注意这个地方他又转置了一次,因为在第一行计算prob的时候,他把一个行向量,转换成了列向量,然后现在要把0加在头上,所以在进行cumsun()运算的时候,又把结果从列向量转换成了行向量。仅从这两行代码里面,就大概只能看出这个意思了。不过简单一说,现在看不出来这个遗传算法的核心是什么样的,一般的神经网络里面只有连锁交换定律的应用,一般没有基因分离定律的应用。看这个样子,这是分离出来然后自由配对的做法,应该是比较高端的东西吧。

G. matlab遗传算法代码检查错误

发现的几处错误:

1、适应蠢碰度函数里面if a[i]=4改为if a(i)==4,类似的还有if b[i]=4。不需要多解释了吧?一个是数组注意和C语言风格区别,另一个是判断相等的符号问题。

2、适应度函数应返回列向量,在fit函数最后加一句:fitness=fitness(:);

3、选择的结果是种群规模减小,不能使用固定的出示规模20,应把适应度函数里面两处循环for i=1:20改为for i=1:size(x,1)

4、主函数里面rein应为reins

代码写到一个M文件中:

functionzd
%%初始化遗传算法参数
%初始化参数
NIND=20;
MAXGEN=100;
NVAR=8;
PRECI=1;
GGAP=0.9;%进化代数,即迭代次数
%种群规模
%%初始化种群计算适应度值
%初始化种群
FieldD=[rep(PRECI,[1,NVAR]);rep([0;1],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI);
ObjV=fit(bs2rv(Chrom,FieldD));
gen=0;
whilegen<MAXGEN
FitnV=ranking(ObjV);
衡弊SelCh=select('sus',Chrom,FitnV,GGAP);
SelCh=recombin('xovsp',SelCh,0.7);
SelCh=mut(SelCh,0.07);
ObjVSel=fit(bs2rv(SelCh,FieldD));
[ChromObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel);
咐档族gen=gen+1

%找最好的染色体
trace(gen,1)=min(ObjV);
trace(gen,2)=sum(ObjV)/length(ObjV);
end
plot(trace(:,1));holdon;
plot(trace(:,2));grid;
legend('average','bestfitness');
function[fitness]=fit(x)
fori=1:size(x,1)
i
%随机产生一个种群
if(x(i,6)*x(i,7)-x(i,8)*x(i,6))*(x(i,3)*x(i,2)-x(i,4)*x(i,1))==0
x(i,:)=unidrnd(2,1,8)-1;
end%染色体的适应度
end
a=x(:,1)+x(:,2)+x(:,3)+x(:,4);
b=x(:,5)+x(:,6)+x(:,7)+x(:,8);
fori=1:size(x,1)
i
ifa(i)==4
c=1;
else
c=0;
end
ifb(i)==4
d=1;
else
d=0;
end
fitness(i)=c+d;
end
fitness=fitness(:);

H. matlab遗传算法代码

我发一些他们的源程序你,都是我在文献中搜索总结出来的:
% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域清让握 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.4 选择复制
% 选择或复制答庆操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),滑唯群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

很多哈,也很麻烦,但是设计程序就是如此!得耐心点才行。 最近又作了些总结,要有兴趣网络HI我吧。我有M文件,运行成功

热点内容
硬壳编程下载 发布:2025-09-14 08:02:56 浏览:731
什么能防止安卓软件自启 发布:2025-09-14 07:48:54 浏览:984
sqlsaserver 发布:2025-09-14 07:44:42 浏览:968
pythonif写一行 发布:2025-09-14 07:41:39 浏览:1002
lua存储数据 发布:2025-09-14 07:33:05 浏览:121
教你如何选配置车 发布:2025-09-14 07:32:21 浏览:426
行李箱自带的密码是多少 发布:2025-09-14 07:27:40 浏览:287
ps2020版本怎么调整存储盘 发布:2025-09-14 07:20:28 浏览:869
奥迪a6哪个配置最保值 发布:2025-09-14 07:11:53 浏览:995
android查看文件 发布:2025-09-14 07:00:37 浏览:301