当前位置:首页 » 操作系统 » 多实例算法

多实例算法

发布时间: 2023-05-02 01:14:17

php几种排序算法实例详解

四种排序算法的PHP实现:
1)插入排序(InsertionSort)的基本思想是:
每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。

2)选择排序(SelectionSort)的基本思想是:
每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕。

3)冒泡排序的基本思想是:
两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。

4)快速排序实质上和冒泡排序一样,都是属于交换排序的一种应用。所以基本思想和上面的冒泡排序是一样的。

1.sort.php文件如下:

<?php
classSort{
private$arr=array();
private$sort='insert';
private$marker='_sort';
private$debug=TRUE;
/**
*构造函数
*
*@paramarray例如:
$config=array(
'arr'=>array(22,3,41,18),//需要排序的数组值
'sort'=>'insert',//可能值:insert,select,bubble,quick
'debug'=>TRUE//可能值:TRUE,FALSE
)
*/
publicfunctionconstruct($config=array()){
if(count($config)>0){
$this->_init($config);
}
}
/**
*获取排序结果
*/
publicfunctiondisplay(){
return$this->arr;
}
/**
*初始化
*
*@paramarray
*@returnbool
*/
privatefunction_init($config=array()){
//参数判断
if(!is_array($config)ORcount($config)==0){
if($this->debug===TRUE){
$this->_log("sort_init_param_invaild");
}
returnFALSE;
}
//初始化成员变量
foreach($configas$key=>$val){
if(isset($this->$key)){
$this->$key=$val;
}
}
//调用相应的成员方法完成排序
$method=$this->sort.$this->marker;
if(!method_exists($this,$method)){
if($this->debug===TRUE){
$this->_log("sort_method_invaild");
}
returnFALSE;
}
if(FALSE===($this->arr=$this->$method($this->arr)))
returnFALSE;
returnTRUE;
}
/**
*插入排序
*
*@paramarray
*@returnbool
*/
privatefunctioninsert_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(insert)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=1;$i<$count;$i++){
$tmp=$arr[$i];
for($j=$i-1;$j>=0;$j--){
if($arr[$j]>$tmp){
$arr[$j+1]=$arr[$j];
$arr[$j]=$tmp;
}
}
}
return$arr;
}
/**
*选择排序
*
*@paramarray
*@returnbool
*/
privatefunctionselect_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(select)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=0;$i<$count-1;$i++){
$min=$i;
for($j=$i+1;$j<$count;$j++){
if($arr[$min]>$arr[$j])$min=$j;
}
if($min!=$i){
$tmp=$arr[$min];
$arr[$min]=$arr[$i];
$arr[$i]=$tmp;
}
}
return$arr;
}
/**
*冒泡排序
*
*@paramarray
*@returnbool
*/
privatefunctionbubble_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(bubble)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=0;$i<$count;$i++){
for($j=$count-1;$j>$i;$j--){
if($arr[$j]<$arr[$j-1]){
$tmp=$arr[$j];
$arr[$j]=$arr[$j-1];
$arr[$j-1]=$tmp;
}
}
}
return$arr;
}
/**
*快速排序
*@bywww.5wx.org
*@paramarray
*@returnbool
*/
privatefunctionquick_sort($arr){
//具体实现
if(count($arr)<=1)return$arr;
$key=$arr[0];
$left_arr=array();
$right_arr=array();
for($i=1;$i<count($arr);$i++){
if($arr[$i]<=$key)
$left_arr[]=$arr[$i];
else
$right_arr[]=$arr[$i];
}
$left_arr=$this->quick_sort($left_arr);
$right_arr=$this->quick_sort($right_arr);

returnarray_merge($left_arr,array($key),$right_arr);
}
/**
*日志记录
*/
privatefunction_log($msg){
$msg='date['.date('Y-m-dH:i:s').']'.$msg.' ';
return@file_put_contents('sort_err.log',$msg,FILE_APPEND);
}
}
/*Endoffilesort.php*/
/*Locationhtdocs/sort.php*/
2.sort_demo.php文件如下:

<?php
require_once('sort.php');
$config=array(
'arr'=>array(23,22,41,18,20,12,200303,2200,1192),
//需要排序的数组值
'sort'=>'select',
//可能值:insert,select,bubble,quick
'debug'=>TRUE
//可能值:TRUE,FALSE
);
$sort=newSort($config);
//var_mp($config['arr']);
var_mp($sort->display());
/*Endofphp*/

❷ 二进制的算法 多举个例子。

1、加法法则: 0+0=0,0+1=1+0=1,1+1=10

2、减法法则: 0 - 0 = 0 1 - 0 = 1 1 - 1 = 0 0 - 1 = 1 有借位,借1当(10)2 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。减法,当需要向上一位借数时,必须把上一位的1看成下一位的(2)10。

3、乘法法则: 0×0=0,0×1=1×0=0,1×1=1

4、除法法则: 0÷1=0,1÷1=1 除法应注意: 0÷0 = 0 0÷1 = 0 1÷0 = 0 (无意义)

(2)多实例算法扩展阅读

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

❸ 什么是算法试从日常生活中找3个例子,描述它们的算法

算法就是解决问题的方法比如你要喝茶就要先找到茶叶,烧一壶开水,然后将茶叶放到杯子里,然后将开水倒入杯中,然后等一段时间再比如你要从a地到b地,中间可能有多种汽车换乘方案,是选速度最快的,还是选最省钱的,还是平衡的,制定换乘方案就是算法。

❹ 五种常用算法

五种常用算法主要有以下几种:

1.回归算法。回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法,是统计机器学习的利器。

2.基于实例的算法。基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。用户通过这种方式来寻找最佳的匹配,因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。

3.正则化方法。正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整,通常对简单模型予以奖励,而对复杂算法予以惩罚。

算法分类编辑算法可大致分为:基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

python实现的几个常用排序算法实例

#encoding=utf-8
importrandom
fromimport
defdirectInsertSort(seq):
"""直接插入排序"""
size=len(seq)
foriinrange(1,size):
tmp,j=seq[i],i
whilej>0andtmp<seq[j-1]:
seq[j],j=seq[j-1],j-1
seq[j]=tmp
returnseq
defdirectSelectSort(seq):
"""直接选择排序"""
size=len(seq)
foriinrange(0,size-1):
k=i;j=i+1
whilej<size:
ifseq[j]<seq[k]:
k=j
j+=1
seq[i],seq[k]=seq[k],seq[i]
returnseq
defbubbleSort(seq):
"""冒泡排序"""
size=len(seq)
foriinrange(1,size):
forjinrange(0,size-i):
ifseq[j+1]<seq[j]:
seq[j+1],seq[j]=seq[j],seq[j+1]
returnseq
def_divide(seq,low,high):
"""快速排序划分函数"""
tmp=seq[low]
whilelow!=high:
whilelow<highandseq[high]>=tmp:high-=1
iflow<high:
seq[low]=seq[high]
low+=1
whilelow<highandseq[low]<=tmp:low+=1
iflow<high:
seq[high]=seq[low]
high-=1
seq[low]=tmp
returnlow
def_quickSort(seq,low,high):
"""快速排序辅助函数"""
iflow>=high:return
mid=_divide(seq,low,high)
_quickSort(seq,low,mid-1)
_quickSort(seq,mid+1,high)
defquickSort(seq):
"""快速排序包裹函数"""
size=len(seq)
_quickSort(seq,0,size-1)
returnseq
defmerge(seq,left,mid,right):
tmp=[]
i,j=left,mid
whilei<midandj<=right:
ifseq[i]<seq[j]:
tmp.append(seq[i])
i+=1
else:
tmp.append(seq[j])
j+=1
ifi<mid:tmp.extend(seq[i:])
ifj<=right:tmp.extend(seq[j:])
seq[left:right+1]=tmp[0:right-left+1]
def_mergeSort(seq,left,right):
ifleft==right:
return
else:
mid=(left+right)/2
_mergeSort(seq,left,mid)
_mergeSort(seq,mid+1,right)
merge(seq,left,mid+1,right)
#二路并归排序
defmergeSort(seq):
size=len(seq)
_mergeSort(seq,0,size-1)
returnseq
if__name__=='__main__':
s=[random.randint(0,100)foriinrange(0,20)]
prints
print" "
printdirectSelectSort((s))
printdirectInsertSort((s))
printbubbleSort((s))
printquickSort((s))
printmergeSort((s))

❻ it的人常说的单实例,多实例什么意思(通俗的讲)

单实例通俗的讲就是一个对象的实例在整个应用生命周期里只生成一次,所有的请求(方法调用)都是由这个实例处理。多实例就是一个对象在应用里生成多个实型碧例,所有的请求可能有不同的实例进行处理。
打个比喻:单实例就像你买火车票时只有一个售票员,所枝银有旅客买票都得通过他。多实例就是有多个售票员,可以向不同卜搭举的售票员请求服务。

❼ c++非阻塞多线程实例应用的算法有哪些

多线程非阻塞模式到现在算是告一段落吧 虽然还有一些小的bug需要修正 总结一下 准备向后面进发


实现功能: 本程序主要实现远程计算的陵锋功能 通过非阻塞套接字和多线程的结合 让通信变得高效 服务器通过维护一个客户端链表来实现对多个客户响应 客户端自身验证表达式的正确性 当输入Byebye时 服务器回复OK 此时客户端断开连接退出

总结:

不管用蠢汪乱何种方式通信 相关联的几个线程总会用一个变量来控制所有的其他线程

对于非阻塞套接字 Recv Send Connect Accept等都需要套上一个基于共同控制变量或者永真的循环来实现对WSAEWOULDBLOCK的返回重试

对于通过事件信号量来通知的两个线程 例如生产者 消费者(生产者生产好了通过hEvent通知消费者) 当生产者退出时 一定要通过该信号量来通知消费者 以免消费者阻塞于WaitForSingleObject 而消费者带档在等到信号量时 也一定要检测生产者是否已经退出(或者是说在这里的断开了连接) 以免发送或接收未知的数据

对于有信号量控制的两个同步线程 要注意是否有共同访问的数据 要时刻记得对数据进行互斥访问

❽ 建议收藏!10 种 Python 聚类算法完整操作示例

聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:

聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:

聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

1.库安装

首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

运行该示例时,您应该看到以下版本号或更高版本。

2.聚类数据集

我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。

它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

数据集的散点图,具有使用亲和力传播识别的聚类

4.聚合聚类

聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

使用聚集聚类识别出具有聚类的数据集的散点图

5.BIRCHBIRCH

聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。

它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

使用BIRCH聚类确定具有聚类的数据集的散点图

6.DBSCANDBSCAN

聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。

它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

使用DBSCAN集群识别出具有集群的数据集的散点图

7.K均值

K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。

它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

使用K均值聚类识别出具有聚类的数据集的散点图

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。

它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

带有最小批次K均值聚类的聚类数据集的散点图

9.均值漂移聚类

均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。

它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

具有均值漂移聚类的聚类数据集散点图

10.OPTICSOPTICS

聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。

它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

使用OPTICS聚类确定具有聚类的数据集的散点图

11.光谱聚类

光谱聚类是一类通用的聚类方法,取自线性线性代数。

它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

使用光谱聚类聚类识别出具有聚类的数据集的散点图

12.高斯混合模型

高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

使用高斯混合聚类识别出具有聚类的数据集的散点图

在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:

热点内容
中国移动用什么服务密码 发布:2024-05-20 00:52:10 浏览:695
make编译输出 发布:2024-05-20 00:37:01 浏览:67
4200存储服务器 发布:2024-05-20 00:20:35 浏览:160
解压小生活 发布:2024-05-20 00:15:03 浏览:143
粘土小游戏服务器ip 发布:2024-05-20 00:14:00 浏览:196
魔兽世界如何快速增加服务器 发布:2024-05-19 23:53:37 浏览:694
安卓手机如何转入苹果手机内 发布:2024-05-19 23:50:35 浏览:405
安卓哪个能安装血染小镇 发布:2024-05-19 23:45:57 浏览:901
tensorflowmac编译 发布:2024-05-19 23:28:59 浏览:702
sqlmaxvarchar 发布:2024-05-19 23:24:02 浏览:703