关系数据库和非关系数据库
⑴ 关系型数据库和非关系型数据库区别
1、数据存储方式不同。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
2、扩展方式不同。
sql和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。
因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。
而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
3、对事务性的支持不同。
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
参考资料来源:网络——关系型数据库
参考资料来源:网络——非关系型数据库
⑵ 关系型数据库和非关系型数据库的区别百度百科
关系型数据库和非关系型数据库的区别在于:
关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。
层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。按照层次模型建立的数据库系统称为层次模型数据库系统。按照网状数据结构建立的数据库系统称为网状数据库系统,用数学方法可将网状数据结构转化为层次数据结构。
⑶ 什么是关系型数据库和非关系型数据库
关系型数据库通过外键关联来建立表与表之拆凳间的关系,非关旅戚旅系型数据库通常指数据以对象的形式存储在数据库中,而对象之间的关系通过每仔模个对象自身的属性来决定
⑷ 关系型数据库和非关系型区别
一、特点不同
1、关系型数据库:传统的关系型数据库采用表格的储存方式,数据以行和列的方式进行存储,要读取和查询都十分方便;关系型数据库按照结构化的方法存储数据;关系型数据库采用结构化查询语言(即SQL)来对数据库进行查询。
2、非关系型数据库:一个Hibari集群是一个分布式系统;个Hibari集群是线性可伸缩的;一个Hibari集群是高度可用;所有的更新都是持久的;所有的更新都是强一致性;所有客户端操作是无锁的。
二、功能不同
1、关系型数据库:关系型数据库十分强调数据的一致性,并为此降低读写性能付出了巨大的代价,虽然关系型数据库存储数据和处理数据的可靠性很不错,但一旦面对海量数据的处理的时候效率就会变得很差,特别是遇到高并发读写的时候性能就会下降得非常厉害。
2、非关系型数据库:可用于云计算应用,如Web电子邮件、社交网络服务,以及其它日常需要储存TB和PB级规模数据的服务。
三、应用领域不同
1、关系型数据库:主要应用于计算机技术,例如在数据库设计中,指定学生Sstudent,专指本科生。
2、非关系型数据库:Hibari可用于云计算环境中,例如 webmail、SNS 和其他要求T/P级数据存储的环境中。Hibari 支持 Java, C/C++, Python, Ruby, 和 Erlang 语言的客户端。
⑸ 关系数据库与非关系型数据库
关系数据库、非关系型数据库。
1、关系数据库
特点:数据集中控制;减少数据冗余等。
适罩毕用范围:对于结构化数据的处理更合适,如学生成绩、地址等,这样的数据一般情况圆蚂下需要使用结构化的查询。
2、非关系数据库
特点:易扩展;大数据量,高性能;灵活的数据模型等。
使用范围:据模型比较简单;需要灵活性更强的IT系统;对数据库性能要求较高。
(5)关系数据库和非关系数据库扩展阅读:
非关系数据库的分类:
1、列存储数据库
这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra,HBase,Riak。
2、文档型数据库
文档型数据库的灵感是来自于LotusNotes办公软件的,而且它同第一种键值存储相类似橘闷埋。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB,MongoDb.国内也有文档型数据库SequoiaDB,已经开源。
⑹ 关系型数据库和非关系型区别
关系型数据库和非关系型在成本、查询速率、储存格式、可扩展性、数据一致绝行性、事务处理上有区别。
⑺ 数据库主要分为哪两种类型
数据库主要分为关系数据库和非关系型数据库(NoSQL)。
1、关系数据库
关系型数据库,存储的格式可以直观地反映实体间的关系。关系型数据库和常见的表格比较相似,关系型数据库中表与表之间是有很多复杂的关联关系的。
常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。
2、非关系型数据库(NoSQL)
指分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术与CAP理论、一致性哈希算法有密切关系。NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。
(7)关系数据库和非关系数据库扩展阅读
关系数据库分为两类:一类是桌面数据库,例如Access、FoxPro和dBase等;另一类是客户/服务器数据库,例如SQL Server、Oracle和Sybase等。桌面数据库用于小型的、单机的应用程序,它不需要网络和服务器,实现起来比较方便,但它只提供数据的存取功能。
客户/服务器数据库主要适用于大型的、多用户的数据库管理系统,应用程序包括两部分:一部分驻留在客户机上,用于向用户显示信息及实现与用户的交互;另一部分驻留在服务器中,主要用来实现对数据库的操作和对数据的计算处理。
⑻ 关系型数据库和非关系型区别
关系型数据库和非关系型区别是扩展方式不同,数据存储方式不同、对事务性的支持不同。
1、扩展方式不同
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
⑼ 关系型数据库和非关系型数据库区别
1/7 分步阅读
1.实质。非关系型数据库的实质:非关系型数据库产品是传统关系型数据库的功能阉割版本,通过减少用不到或很少用的功能,来大幅度提高产品性能。
2/7
2.价格。目前基本上大部分主流的非关系型数据库都是免费的。而比较有名气的关系型数据库,比如Oracle、DB2、MSSQL是收费的。虽然Mysql免费,但它需要做很多工作才能正式用于生产。
3/7
3.功能。实际开发中,有很多业务需求,其实并不需要完整的关系型数据库功能,非关系型数据库的功能就足够使用了。这种情况下,使用性能更高、成本更低的非关系型数据库当然是更明智的选择。
4/7
传统的SQL数据库有3个缺点
许可费用昂贵
不能自动Sharding
严格的Schema
互联网公司一般都是技术密集型的,就自己根据自己的需求搞了一套数据存储,牺牲了严格一致性,满足互联网伸缩性的要求。
5/7
nosql 当年是为了处理 杂乱的非结构化数据来设计的 比如 网页访问信息 那就如楼上说的 阉割了sql 的 acid 特性 这样当然快了啊 比如插入数据
相反如果是一些 交易数据 数据的安全稳定 压倒一切的时候 rdbms 就显现威力了 但是rdbms 在面对nosql的 一些挑战之后 大力优化了 对于一些 非结构化数据的支持 比如json 数据 同时rdbms 对于 olap and oltp 的支持 也要比 nosql快的你是一点半点
6/7
非关系型数据库的优势:1. 性能NOSQL是基于键值对的,可以想象成表中的主键和值的对应关系,而且不需要经过SQL层的解析,所以性能非常高。2. 可扩展性同样也是因为基于键值对,数据之间没有耦合性,所以非常容易水平扩展。
7/7
关系型数据库的优势:1. 复杂查询可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。2. 事务支持使得对于安全性能很高的数据访问要求得以实现。对于这两类数据库,对方的优势就是自己的弱势,反之亦然。
⑽ 数据库的问题:关系型数据库与非关系型数据库的区别,和各自的发展前景
关系型数据库与非关系型数据库的区别
非关系型数据库的优势:
1. 性能
NOSQL是基于键值对的,可以想象成表中的主键和值的对应关系,而且不需要经过SQL层的解析,所以性能非常高。
2. 可扩展性
同样也是因为基于键值对,数据之间没有耦合性,所以非常容易水平扩展。
关系型数据库的优势:
1. 复杂查询
可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
2. 事简掘谈务支持
使得对于安全性能很高的数据访问要求得以实现。
对于这两类数散烂据库,对方的优势就是自己的弱势,反之亦然。
但是近年来这两拦碰种数据库都在向着另外一个方向进化。例如:
NOSQL数据库慢慢开始具备SQL数据库的一些复杂查询功能的雏形,比如Couchbase的index以及MONGO的复杂查询。对于事务的支持也可以用一些系统级的原子操作来实现例如乐观锁之类的方法来曲线救国。
SQL数据库也开始慢慢进化,比如HandlerSocker技术的实现,可以在MYSQL上实现对于SQL层的穿透,用NOSQL的方式访问数据库,性能可以上可以达到甚至超越NOSQL数据库。可扩展性上例如Percona Server,可以实现无中心化的集群。
虽然这两极都因为各自的弱势而开始进化出另一极的一些特性,但是这些特性的增加也会消弱其本来具备的优势,比如Couchbase上的index的增加会逐步降低数据库的读写性能。所以怎样构建系统的短期和长期存储策略,用好他们各自的强项是架构师需要好好考虑的重要问题。