当前位置:首页 » 操作系统 » 人工智能遗传算法

人工智能遗传算法

发布时间: 2023-05-16 15:33:57

❶ 求助:人工智能“遗传算法求解f(x)=xcosx+2的最大值”

为了方便我只求了-3.14到3.14之间的最大值,你可以自己改一下,不过范围大了之后,种群也因该扩大,我的种群只有66个

结果:极值点(-3.141593,5.141593)

我又算了一下-100到100之间的极大值

结果:极值点(-97.399473,99.394504)

-1000到1000之间的极大值

结果:(999,1001)

-2000到2000之间的极大值

结果:(1998.053550,2000.053163)

以上结果我用matlab画图验证了,没问题。
希望再给加点分,呵呵

//中国电子科技集团公司

//第一研究室

//呼文韬

//[email protected]

//随机初始种群
//编码方式为格雷码
//选择方法为随机遍历
//采用了精英保存策略
//采用了自适应的交叉率和变异率
//采用了与模拟退火算法相结合的尺度变换
//采用了均匀交叉法

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <iostream.h>
#include <iomanip.h>
#include <time.h>
#include <windows.h>
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
#define zhenjuli 0.005
#define PI 3.14159265358
#define T0 100000//温度要取得很高才行。
#define zhongqunshu1 200
#define zuobianjie -2000
#define youbianjie 2000
unsigned int seed=0; //seed 为种子,要设为全局变量
void mysrand(long int i) //初始化种子
{
seed = -i;
}
long a[1];
//double hunn;
//double c=4;
//设置全局变量
struct indivial
{
unsigned *chrom; //染色体;
double geti;//变量值
double shiying; //目标函数的值;
double fitness; //变换后的适应度值;
};
indivial *zuiyougeti;//精英保存策略
int zhongqunshu; //种群大小
indivial *nowpop;//当前代
indivial *newpop;//新一代
double sumfitness;//当代的总适应度fitness
double sumshiying;//当代的总适应度shiying
double maxfitness;//最大适应度
double avefitness;//平均适应度
double maxshiying;//最大适应度
double avgshiying;//平均适应度
float pc;//交叉概率
float pm;//变异概率
int lchrom;//染色体长度
int maxgen;//最大遗传代数
int gen;//遗传代数
//函数
int flipc(double ,double );//判断是否交叉
int flipm(double );//判断是否变异
int rnd(int low,int high);//产生low与high之间的任意数
void initialize();//遗传算法初始化
void preselectfitness(); //计算sumfiness,avefitness,maxfitness
void generation();
double suijibianli();//产生随机遍历指针
int fu(float );//选择要复制的个体
void crossover(indivial ,indivial ,indivial &,indivial &);//交叉
void bianyi(indivial &);//变异
void mubiaohanshu(indivial &);//计算适应度
void chibianhuan(indivial &);//对shiying进行尺度变换赋给fitness
double ran1(long *);//随机数初始
void bianma(double bianliang,unsigned *p);//编码
double yima(unsigned *p);
void guanjiancanshujisuan();//计算shiying,根据shiying计算sumshiying,对shiying进行尺度变换变成fitness,根据fitness计算sumfitness,avefitness,maxfitness
void jingyingbaoliu();
void glp(int n,int s,int *,int (*)[1],float (*)[1]);//glp生成函数
BOOL Exist(int Val, int Num, int *Array);//判断一个数在前面是否出现过
int cmpfitness(const void *p1,const void *p2)
{
float i=((indivial *)p1)->shiying;//现在是按照"适应度"排序,改成"个体"的话就是按照"个体"排序
float j=((indivial *)p2)->shiying;
return i<j ? -1:(i==j ? 0:1);//现在是按升序牌排列,将1和-1互换后就是按降序排列
}
void main()
{
initialize();
cout<<zuiyougeti->geti<<" "<<zuiyougeti->shiying<<endl;/////////////
for(gen=1;gen<maxgen;gen++)
{ generation();
}
jingyingbaoliu();
cout<<setiosflags(ios::fixed)<<setprecision(6)<<zuiyougeti->geti<<" "<<setiosflags(ios::fixed)<<setprecision(6)<<(zuiyougeti->shiying)<<endl;////////////////
delete [] newpop;
delete [] nowpop;
delete [] zuiyougeti;
system("pause");
}
void initialize()
{
int q[zhongqunshu1][1],s=1;
float xx[zhongqunshu1][1];//生成的glp用x储存
int h[1]={1};//生成向量
zuiyougeti=new indivial;//最优个体的生成
zhongqunshu=200;//种群数量
nowpop=new indivial[zhongqunshu1];//当代
newpop=new indivial[zhongqunshu1];//新一代
maxgen=150;//最大代数
gen=0;//起始代
lchrom=22;//基因数量的初始化
mysrand(time(0));//随机数种子
a[0]=seed;//随机数种子
//对最优个体的初始化
zuiyougeti->geti=0;
zuiyougeti->fitness=0;
zuiyougeti->shiying=0;
//
glp(zhongqunshu,s,h,q,xx);
//for(int i=0;i<zhongqunshu1;i++)//产生初始种群
//{
// for(int j=0;j<s;j++)
// {
// nowpop[i].geti=zuobianjie+(youbianjie-zuobianjie)*xx[i][j];
// }
//}
for(int i=0;i<zhongqunshu1;i++)//产生初始种群
{
nowpop[i].geti=zuobianjie+(youbianjie-(zuobianjie))*ran1(a);
}
//nowpop[0].geti=999;//////////////////////////
guanjiancanshujisuan();
jingyingbaoliu(); //精英保留的实现
guanjiancanshujisuan();//计算shiying,根据shiying计算sumshiying,对shiying进行尺度变换变成fitness,根据fitness计算sumfitness,avefitness,maxfitness
}
void jingyingbaoliu() //精英保留的实现
{
indivial *zuiyougetiguo;
zuiyougetiguo=new indivial[zhongqunshu1];//建立一个过渡数组
for(int i=0;i<zhongqunshu;i++)//将当代个体复制到过渡数组中
zuiyougetiguo[i]=nowpop[i];
qsort(zuiyougetiguo,zhongqunshu1,sizeof(indivial),&cmpfitness);//按fitness升序排序
// cout<<"zuiyougetiguo适应度:"<<zuiyougetiguo[zhongqunshu1-1].shiying<<endl;///////////
// cout<<"zuiyougeti适应度:"<<zuiyougeti->shiying<<endl;///////////////////
//system("pause");
if(zuiyougetiguo[zhongqunshu-1].shiying>zuiyougeti->shiying)
{
*zuiyougeti=zuiyougetiguo[zhongqunshu1-1];//如果最优个体的fitness比当代最大的fitness小则用当代的代替之
//cout<<"zuiyougetiguo个体:"<<zuiyougetiguo[zhongqunshu1-1].geti<<endl;/////////////
//cout<<"zuiyougeti个体:"<<zuiyougeti->geti<<endl;/////////////
}
else
nowpop[rnd(0,(zhongqunshu1-1))]=*zuiyougeti;//否则的话从当代中随机挑选一个用最优个体代替之
delete [] zuiyougetiguo;//释放过渡数组
}
void guanjiancanshujisuan()//计算shiying,根据shiying计算sumshiying,对shiying进行尺度变换变成fitness,根据fitness计算sumfitness,avefitness,maxfitness
{
for(int i=0;i<zhongqunshu;i++)//计算shiying
mubiaohanshu(nowpop[i]);
for(i=0;i<zhongqunshu;i++)//对shiying进行尺度变换变成fitness
chibianhuan(nowpop[i]);
preselectfitness();//根据fitness计算sumfitness,avefitness,maxfitness
}
void mubiaohanshu(indivial &bianliang)//计算shiying
{
bianliang.shiying=(bianliang.geti*cos(bianliang.geti)+2.0);//目标函数
}
void chibianhuan(indivial &bianliang)//对shiying进行尺度变换变成fitness
{
double T;//退火温度
T=T0*(pow(0.99,(gen+1-1)));
double sum=0;
for(int j=0;j<zhongqunshu;j++)
sum+=exp(nowpop[j].shiying/T);
bianliang.fitness=exp(bianliang.shiying/T)/sum;//算出fitness
}
void preselectfitness()//根据fitness计算sumfitness,avefitness,maxfitness
{
int j;
sumfitness=0;
for(j=0;j<zhongqunshu;j++)
sumfitness+=nowpop[j].fitness;
indivial *guo;
guo=new indivial[zhongqunshu1];
for(j=0;j<zhongqunshu;j++)
guo[j]=nowpop[j];
qsort(guo,zhongqunshu1,sizeof(indivial),&cmpfitness);
maxfitness=guo[zhongqunshu1-1].fitness;
avefitness=sumfitness/zhongqunshu1;
delete [] guo;
}
void generation()
{
indivial fuqin1,fuqin2,*pipeiguo,*pipeichi;
int *peiishuzu;//用来存放产生的随机配对
pipeiguo=new indivial[zhongqunshu1];
pipeichi=new indivial[zhongqunshu1];
peiishuzu=new int[zhongqunshu1];
int member1,member2,j=0,fujishu=0,i=0,temp=0,tt=0;
float zhen;
//随机遍历的实现
for(zhen=suijibianli();zhen<1;(zhen=zhen+zhenjuli))//设定指针1/66
{
pipeichi[fujishu]=nowpop[fu(zhen)];
fujishu++;
}

//交叉与变异的实现
//交叉
for(i=0;i<zhongqunshu1;i++)
{
peiishuzu[i]=-1;
}
for (i=0; i<zhongqunshu1; i++)
{
temp =rnd(0,zhongqunshu1-1); //产生值在0-zhongqunshu1-1的随机数
while(Exist(temp, i, peiishuzu))//判断产生的随机数是否已经产生过,如果是,则再产生一个随机数
{
temp =rnd(0,zhongqunshu1-1);
}
//如果没有的话,则把产生的随机数放在peiishuzu中
*(peiishuzu+i) = temp;
}
for(i=0;i<zhongqunshu1-1;i=i+2)
{
fuqin1=pipeichi[peiishuzu[i]];
fuqin2=pipeichi[peiishuzu[i+1]];
crossover(fuqin1,fuqin2,newpop[i],newpop[i+1]);
}
for(j=0;j<zhongqunshu1;j++)
{
//if(newpop[j].geti<-1000)
//cout<<"个体数值小于下界了";
nowpop[j].geti=newpop[j].geti;
}
//
guanjiancanshujisuan();
//变异的实现
for(j=0;j<zhongqunshu;j++)
{
bianyi(nowpop[j]);
}
//
guanjiancanshujisuan();
//精英保留的实现
jingyingbaoliu();
//
guanjiancanshujisuan();
delete [] peiishuzu;
delete [] pipeichi;
delete [] pipeiguo;
}
void crossover(indivial parent1,indivial parent2,indivial &child1,indivial &child2)//交叉
{
int j;
unsigned *panan;
panan=new unsigned[lchrom];
parent1.chrom=new unsigned[lchrom];
parent2.chrom=new unsigned[lchrom];
child1.chrom=new unsigned[lchrom];
child2.chrom=new unsigned[lchrom];
//cout<<"jiaocha"<<endl;///////////////////////
bianma(parent1.geti,parent1.chrom);
bianma(parent2.geti,parent2.chrom);
if(flipc(parent1.fitness,parent2.fitness))
{
for(j=0;j<lchrom;j++)
panan[j]=rnd(0,1);
//for(j=0;j<lchrom;j++)////////////////
// {
// cout<<panan[j];/////////////
// }
// cout<<endl;////////////////
// system("pause");////////////////
for(j=0;j<lchrom;j++)
{
if(panan[j]==1)
child1.chrom[j]=parent1.chrom[j];
else
child1.chrom[j]=parent2.chrom[j];
}
for(j=0;j<lchrom;j++)
{
if(panan[j]==0)
child2.chrom[j]=parent1.chrom[j];
else
child2.chrom[j]=parent2.chrom[j];
}
//for(j=0;j<lchrom;j++)////////////////
//{
// cout<<child1.chrom[j];/////////////
// }
//cout<<endl;////////////////
// system("pause");////////////////
child1.geti=yima(child1.chrom);
child2.geti=yima(child2.chrom);
delete [] child2.chrom;
delete [] child1.chrom;
delete [] parent2.chrom;
delete [] parent1.chrom;
delete [] panan;
}
else
{
for(j=0;j<lchrom;j++)
{
child1.chrom[j]=parent1.chrom[j];
child2.chrom[j]=parent2.chrom[j];
}
child1.geti=yima(child1.chrom);
child2.geti=yima(child2.chrom);
delete [] child2.chrom;
delete [] child1.chrom;
delete [] parent2.chrom;
delete [] parent1.chrom;
delete [] panan;
}
}
void bianyi(indivial &child)//变异
{
child.chrom=new unsigned[lchrom];
//cout<<"变异"<<endl;
bianma(child.geti,child.chrom);
for(int i=0;i<lchrom;i++)
if(flipm(child.fitness))
{
if(child.chrom[i]=0)
child.chrom[i]=1;
else
child.chrom[i]=0;
}
child.geti=yima(child.chrom);
delete [] child.chrom;
}
void bianma(double bianliang,unsigned *p)//编码
{
unsigned *q;
unsigned *gray;
q=new unsigned[lchrom];
gray=new unsigned[lchrom];
int x=0;
int i=0,j=0;
if(bianliang<zuobianjie)///////////////////
{
cout<<"bianliang:"<<bianliang<<endl;/////////
system("pause");
}
//cout<<youbianjie-(zuobianjie)<<endl;
//system("pause");
x=(bianliang-(zuobianjie))*((pow(2,lchrom)-1)/(youbianjie-(zuobianjie)));
//cout<<x<<endl;///////////
if(x<0)
system("pause");///////////
for(i=0;i<lchrom;i++)
{
q[i]=0;
p[i]=0;
}
i=0;
while (x!=0&&(i!=lchrom))
{
q[i]=(unsigned)(x%2);
x=x/2;
i++;
}
// for(i=0;i<lchrom;i++)//////////////////
// cout<<q[i];///////////////
// cout<<endl;///////////
int w=lchrom-1;
if(q[w]!=0&&q[w]!=1)
system("pause");
for(j=0;j<lchrom&&w>0;j++)
{
p[j]=q[w];
w--;
}
//cout<<"yuanma"<<endl;
//for(j=0;j<lchrom;j++)///////////
// cout<<p[j];////////
//cout<<endl;////////////////////
gray[0]=p[0];
for(j=1;j<lchrom;j++)
{
if(p[j-1]==p[j])
gray[j]=0;
else if(p[j-1]!=p[j])
gray[j]=1;
}
for(j=0;j<lchrom;j++)
p[j]=gray[j];
//cout<<"geleima"<<endl;
//for(j=0;j<lchrom;j++)///////////
// cout<<p[j];////////
//cout<<endl;////////////////////
//system("pause");///////////

delete [] gray;
delete [] q;
}
double yima(unsigned *p) //译码
{

int i=0;
// for(i=0;i<lchrom;i++)/////////
// {
// cout<<p[i];//////
// }
// cout<<endl;/////////
// system("pause");//////////
int x=0;
unsigned *q;
q=new unsigned[lchrom];
q[0]=p[0];
// cout<<q[0]<<endl;//////////////////
// system("pause");//////////

for(int j=1;j<lchrom;j++)
{
if(q[j-1]==p[j])
q[j]=0;
else if(q[j-1]!=p[j])
q[j]=1;
}
// for(i=0;i<lchrom;i++)//////
// {
// cout<<q[i];//////////
// if(q[i]!=0&&q[i]!=1)
// {
// cout<<q[i];
// system("pause");
// }
// }
// cout<<endl;////////
// system("pause");///////////////////
for(i=0;i<lchrom;i++)
x=x+q[i]*pow(2,(lchrom-i-1));
if(x<0)
{
cout<<"译码出错1"<<endl;
system("pause");
}
//cout<<"x:"<<x<<endl;
double bianliang;
//cout<<pow(2,22)<<endl;
//cout<<2000*x<<endl;
//cout<<(x*(2000/(pow(2,22)-1)))<<endl;
bianliang=(x*((youbianjie-(zuobianjie))/(pow(2,lchrom)-1)))+zuobianjie;
if(bianliang<zuobianjie)
{
cout<<"译码出错2"<<endl;
system("pause");
}
delete [] q;
return bianliang;
}
double ran1(long *im)
{
int j;
long k;
static long im2=123456789;
static long iy=0;
static long iv[NTAB];
float temp;
if (*im <= 0)
{
if (-(*im) < 1) *im=1;
else *im = -(*im);
im2=(*im);
for (j=NTAB+7;j>=0;j--)
{
k=(*im)/IQ1;
*im=IA1*(*im-k*IQ1)-k*IR1;
if (*im < 0) *im += IM1;
if (j < NTAB) iv[j] = *im;
}
iy=iv[0];
}
k=(*im)/IQ1;
*im=IA1*(*im-k*IQ1)-k*IR1;
if (*im < 0) *im += IM1;
k=im2/IQ2;
im2=IA2*(im2-k*IQ2)-k*IR2;
if (im2 < 0) im2 += IM2;
j=iy/NDIV;
iy=iv[j]-im2;
iv[j] = *im;
if (iy < 1) iy += IMM1;
if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;
}
double suijibianli()//随机遍历
{
double i=ran1(a);
while(i>zhenjuli)
{
i=ran1(a);
}
//cout<<i<<endl;//////////////
return i;
}
int fu(float p)//复制
{
int i;
double sum=0;
if(sumfitness!=0)
{
for(i=0;(sum<p)&&(i<zhongqunshu);i++)
sum+=nowpop[i].fitness/sumfitness;
}
else
i=rnd(1,zhongqunshu1);
return(i-1);
}

int rnd(int low, int high) /*在整数low和high之间产生一个随机整数*/
{
int i;
if(low >= high)
i = low;
else
{
i =(int)((ran1(a) * (high - low + 1)) + low);
if(i > high) i = high;
}
return(i);
}
int flipc(double p,double q)//判断是否交叉
{
double pc1=0.9,pc2=0.6;
if((p-q)>0)
{
if(p>=avefitness)
{
pc=pc1-(pc1-pc2)*(p-avefitness)/(maxfitness-avefitness);
}
else
pc=pc1;
}
else
{
if(q>=avefitness)
{
pc=pc1-(pc1-pc2)*(q-avefitness)/(maxfitness-avefitness);
}
else
pc=pc1;
}
if(ran1(a)<=pc)
return(1);
else
return(0);
}
int flipm(double p)//判断是否变异
{
double pm1=0.001,pm2=0.0001;
if(p>=avefitness)
{
pm=(pm1-(pm1-pm2)*(maxfitness-p)/(maxfitness-avefitness));
}
else
pm=pm1;
if(ran1(a)<=pm)
return(1);
else
return(0);
}
void glp(int n,int s,int *h,int (*q)[1],float (*xx)[1])//glp
{
int i=0,j=0;
//求解q
for(i=0;i<n;i++)
{
for(j=0;j<s;j++)
{
*(*(q+i)+j)=((i+1)*(*(h+j)))%n;
}
}
i=n-1;
for(j=0;j<s;j++)
{
*(*(q+i)+j)=n;
}
//求解x
for(i=0;i<n;i++)
{
for(j=0;j<s;j++)
{
*(*(xx+i)+j)=(float)(2*(*(*(q+i)+j))-1)/(2*n);
}
}
}
BOOL Exist(int Val, int Num, int *Array)//判断一个数是否在一个数组的前Num个数中
{
BOOL FLAG = FALSE;
int i;
for (i=0; i<Num; i++)
if (Val == *(Array + i))
{
FLAG = TRUE;
break;
}
return FLAG;
}

❷ 人工智能的实现方法有哪些

人工智能在计算机上实现时有2种不同的方式:

一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。

另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

❸ 人工智能之进化算法

进化计算的三大分支包括:遗传算法(Genetic Algorithm ,简称GA)、进化规划(Evolu-tionary Programming,简称EP)和进化策略(Evolution Strategies ,简称ES)。这三个分支在算法实现方面具有一些细微的差别,但它们具有一个共同的特点,即都是借助生物进化的思想和原理来解决实际问题。

遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法,由美国Holand J教授于1975年首次提出。它是利用某种编码技术作用于称为染色体的二进制数串,其基本思想是模拟由这些串组成的种群的进化过程,通过有组织的、然而是随机的信息交换来重新组合那些适应性好的串。遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并根据适应性来选择染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会。遗传算法尤其适用于处理传统搜索方法难于解决的复杂的非线性问题,可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域,是21世纪有关智能计算中的关键技术之一。

1964年,由德国柏林工业大学的RechenbergI等人提出。在求解流体动力学柔性弯曲管的形状优化问题时,用传统的方法很难在优化设计中描述物体形状的参数,然而利用生物变异的思想来随机地改变参数值并获得了较好效果。随后,他们便对这种方法进行了深入的研究和发展,形成了进化计算的另一个分支——进化策略。

进化策略与遗传算法的不同之处在于:进化策略直接在解空间上进行操作,强调进化过程中从父体到后代行为的自适应性和多样性,强调进化过程中搜索步长的自适应性调节;而遗传算法是将原问题的解空间映射到位串空间之中,然后再施行遗传操作,它强调个体基因结构的变化对其适应度的影响。

进化策略主要用于求解数值优化问题。

进化规划的方法最初是由美国人Fogel LJ等人在20世纪60年代提出的。他们在人工智能的研究中发现,智能行为要具有能预测其所处环境的状态,并按照给定的目标做出适当的响应的能力。在研究中,他们将模拟环境描述成是由有限字符集中符号组成的序列。

进化算法与传统的算法具有很多不同之处,但其最主要的特点体现在下述两个方面:

进化计算的智能性包括自组织、自适应和自学习性等。应用进化计算求解问题时,在确定了编码方案、适应值函数及遗传算子以后,算法将根据“适者生存、不适应者淘汰"的策略,利用进化过程中获得的信息自行组织搜索,从而不断地向最佳解方向逼近。自然选择消除了传统算法设计过程中的-一个最大障碍:即需要事先描述问题的全部特点,并说明针对问题的不同特点算法应采取的措施。于是,利用进化计算的方法可以解决那些结构尚无人能理解的复杂问题。

进化计算的本质并行性表现在两个方面:

一是进化计算是内在并行的,即进化计算本身非常适合大规模并行。

二是进化计算的内含并行性,由于进化计算采用种群的方式组织搜索,从而它可以同时搜索解空间内的多个区域,并相互交流信息,这种搜索方式使得进化计算能以较少的计算获得较大的收益。

❹ 网上经常所说的遗传算法与基因算法是一回事吗有什么不同各自的用途用在什么地方

遗传算法
GA是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holland于1975年首先提出来的。

它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。

Holland创建的遗传算法是一种概率搜索算法,它是利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些组成的进化过程。跗算法通过有组织地然而是随机地信息交换重新组合那些适应性好的串,在每一代中,利用上一代串结构中适应好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。

遗传算法是一类随机化算法,但是它不是简单的随机走动,它可以有效地利用已经有的信息处理来搜索那些有希望改善解质量的串,类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来造反染色体,使适用性好的染色体比适应性差的染色体有更多的繁殖机会。

基因:组成染色体的单元,可以表示为一个二进制位,一个整数或一个字符等。

染色体或个体:表示待求解问题的一个可能解,由若干基因组成,是GA操作的基本对象。

群体:一定数量的个体组成了群体,表示GA的遗传搜索空间。

适应度或适度:代表一个个体所对应解的优劣,通常由某一适应度函数表示。

选择:GA的基本操作之一,即根据个体的适应度,在群体中按照一定的概论选择可以作为父本的个体,选择依据是适应度大的个体被选中的概率高。选择操作体现了适者生存,优胜劣汰的进化规则。

交叉:GA的基本操作之一,即将父本个体按照一定的概率随机地交换基因形成新的个体。

变异:GA的基本操作之一,即即按一定概率随机改变某个体的基因值。

基因算法是一种生物进化的算法,实际上是一种多目标的探索法.能够用于计划与排程.它是非常新的技术,目前,还没有在商业中实际运用.
采用生物基因技术高级算法,处理日益复杂的现实世界,也是人工智能上,高级约束算法上的挑战. 基因算法是一种搜索技术,它的目标是寻找最好的解决方案。这种搜索技术是一种优化组合,它以模仿生物进化过程为基础。基因算法的基本思想是,进化就是选择了最优种类。基因算法将应用APS上,以获得“最优”的解决方案。

❺ 人工智能算法

推荐教程:Python教程

人工智能英文简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。



人工智能算法也被称之为软计算 ,它是人们受自然界规律的启迪,根据其原理模拟求解问题的算法。



目前的人工智能算法有人工神经网络遗传算法、模拟退火算法、群集智能蚁群算法和例子群算等等。



随着人工智能算法的不断优化,可以不仅可以帮助我们提高工作效率、改善我们的生活水平,同时也能为我们在庞大的现代信息资源中迅速的找到我们所需要的信息。

❻ 神经网络和遗传算法有什么关系

遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。
可以将遗传算法用于神经网络的参数优化中。

热点内容
光遇发光耳机怎么设置安卓 发布:2025-05-15 05:32:03 浏览:111
台电安卓平板系统太低怎么办 发布:2025-05-15 05:20:00 浏览:508
安装了zlib编译报错 发布:2025-05-15 05:19:56 浏览:167
二分算法无序 发布:2025-05-15 05:18:22 浏览:29
网易我的世界服务器组件怎么安装 发布:2025-05-15 05:16:58 浏览:312
如何复制密码狗 发布:2025-05-15 05:15:28 浏览:737
c语言报告三 发布:2025-05-15 05:10:37 浏览:844
09压缩饼干 发布:2025-05-15 05:05:58 浏览:279
迭代法编程c 发布:2025-05-15 04:58:01 浏览:815
用什么dns服务器地址快 发布:2025-05-15 04:52:59 浏览:27