linux信号量共享内存
‘壹’ linux查看共享内存命令
共享内存查看
使用ipcs命令,不加如何参数时,会把共享内存、信号量、消息队列的信息都打印出来,如果只想显示共享内存信息,使用如下命令:
[root@localhost ~]# ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 1867776 root 600 393216 2 dest
0x00000000 1900545 root 600 393216 2 dest
0x00030021 1703938 zc 666 131104 1
0x0003802e 1736707 zc 666 131104 1
0x00030004 1769476 zc 666 131104 1
0x00038002 1802245 zc 666 131104 1
0x00000000 1933318 root 600 393216 2 dest
0x00000000 1966087 root 600 393216 2 dest
0x00000000 1998856 root 600 393216 2 dest
0x00000000 2031625 root 600 393216 2 dest
0x00000000 2064394 root 600 393216 2 dest
0x0014350c 2261003 cs 666 33554432 2
0x00000000 2129932 root 600 393216 2 dest
0x00000000 2162701 root 600 393216 2 dest
0x00143511 395837454 root 666 1048576 1
其中:
第一列就是共享内存的key;
第二列是共享内存的编号shmid;
第三列就是创建的用户owner;
第四列就是权限perms;
第五列为创建的大小bytes;
第六列为连接到共享内存的进程数nattach;
第七列是共享内存的状态status。其中显示“dest”表示共享内存段已经被删除,但是还有用户在使用它,当该段内存的mode字段设置为SHM_DEST时就会显示“dest”。当用户调用shmctl的IPC_RMID时,内存先查看多少个进程与这个内存关联着,如果关联数为0,就会销毁这段共享内存,否者设置这段内存的mod的mode位为SHM_DEST,如果所有进程都不用则删除这段共享内存。
‘贰’ linux 共享内存 可不可以不加锁呢 系统有两个进程,一个负责写入,一个负责读取
能.并且是"要"加锁.可以使用信号量加锁.
‘叁’ LINUX 信号量共存 共享内存通信
/***Msginput.c***/
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/sem.h>
#include<unistd.h>
#include<stdio.h>
#include<errno.h>
#include<string.h>
#include"Mysem.h"
int main(){
FILE *fp;
int empty;
int full;
int mutex;
char * shm;
int shmid;
fp = fopen("shmid","r");
fread(&shmid,sizeof(int), 1, fp);
fread(&empty,sizeof(int), 1, fp);
fread(&full,sizeof(int), 1, fp);
fread(&mutex,sizeof(int), 1, fp);
fclose(fp);
shm = shmat(shmid, NULL, 0);
while(1){
P(&empty);
P(&mutex);
scanf("%s", shm);
if(strcmp(shm, "END") == 0){
V(&mutex);
V(&full);
break;
}
V(&mutex);
V(&full);
}
return 0;
}
/****Mysem.c*****/
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/sem.h>
#include<unistd.h>
#include<stdio.h>
#include<errno.h>
#include<string.h>
#include "Mysem.h"
#define BUFFER_SIZE 512
int main(){
char *shm;
int empty;
int full;
int mutex;
int shmid;
int pid;
int i;
FILE *fp;
// int init_sem_value = 0;
empty = semget(IPC_PRIVATE, 1, (0600|IPC_CREAT));
if(empty == -1){
perror("semget");
exit(1);
}
if(semctl(empty, 0, SETVAL, 1)<0){
perror("semctl");
exit(1);
}
full = semget(IPC_PRIVATE, 1, (0600|IPC_CREAT));
if(full == -1){
perror("semget");
exit(1);
}
if(semctl(full, 0, SETVAL, 0)<0){
perror("semctl");
exit(1);
}
mutex = semget(IPC_PRIVATE, 1, (0600|IPC_CREAT));
if(mutex == -1){
perror("semget");
exit(1);
}
if(semctl(mutex, 0, SETVAL, 1)<0){
perror("semctl");
exit(1);
}
shmid = shmget(IPC_PRIVATE, (BUFFER_SIZE*sizeof(char)),(IPC_CREAT|0600));
if(shmid == -1){
perror("shmget");
exit(1);
}
shm = shmat(shmid, NULL, 0);
if(shm == (char*)-1){
perror("shmat");
exit(1);
}
fp = fopen("shmid","w");
fwrite(&shmid, sizeof(int), 1, fp);
fwrite(&empty, sizeof(int), 1, fp);
fwrite(&full, sizeof(int), 1, fp);
fwrite(&mutex, sizeof(int), 1, fp);
fclose(fp);
pid = fork();
if(pid == 0){
execlp("./Msginput", "./Msginput",0);
perror("execlp");
exit(1);
}else{
while(1){
P(&full);
P(&mutex);
printf("%s\n", shm);
if(strcmp(shm,"END") == 0){
V(&mutex);
V(&empty);
break;
}
V(&mutex);
V(&empty);
}
}
wait(0);
if(semctl(full, 0, IPC_RMID, 1) == -1){
perror("semctl");
exit(1);
}
if(semctl(empty, 0, IPC_RMID, 1) == -1){
perror("semctl");
exit(1);
}
if(semctl(mutex, 0, IPC_RMID, 1) == -1){
perror("semctl");
exit(1);
}
if(shmctl(shmid, IPC_RMID, NULL) == -1){
perror("shmctl");
exit(1);
}
exit(0);
}
/****Mysem.h*****/
void P(int *s);
void V(int *s);
extern void *shmat (int __shmid, __const void *__shmaddr, int __shmflg);
void P(int *s){
struct sembuf sembuffer, *sops;
sops=&sembuffer;
sops->sem_num = 0;
sops->sem_op = -1;
sops->sem_flg = 0;
if(semop(*s, sops, 1)<0){
perror("semop");
exit(1);
}
return ;
}
void V(int *s){
struct sembuf sembuffer, *sops;
sops = &sembuffer;
sops->sem_num = 0;
sops->sem_op = 1;
sops->sem_flg = 0;
if(semop(*s, sops, 1)<0){
perror("semop");
exit(1);
}
return;
}
‘肆’ linux进程间通信问题 我想用共享内存的方式实现信号量控制一个不许并行的的函数 请问下面我的代码合理吗
看你好像完全搞混了。。。什么叫用共享内存的方式实现信号量控制不能并行的代码?
首先共享内存和信号量都可以实现进程间通信,但是他们的作用或者说使用的方向是有明显的区别的:
1:共享内存是创建一块内存区域,多个进程可以同时访问该区域,一般用于进程间数据传输,效率比较明显。
2:信号量则完全不同,信号量主要是用来控制临界资源的访问,也就是你说的不能并行的函数/代码。
3:说一下实现,共享内存直接用API就可以了,信号量一般会进行封装,类似于对链表的操作进行一些简单的函数封装一样,下面给出信号量的使用实例代码,可以参考:
sem_ctl.c文件内容:
int init_sem(int sem_id,int init_value)
{
union semun sem_union;
sem_union.val = init_value;
if(semctl(sem_id,0,SETVAL,sem_union) == -1)
{
perror("semctl");
return -1;
}
return 0;
}
int del_sem(int sem_id)
{
union semun sem_union;
if(semctl(sem_id,0,IPC_RMID,sem_union) == -1)
{
perror("delete semaphore");
return -1;
}
return 0;
}
int sem_p(int sem_id)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1;
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id,&sem_b,1) ==-1)
{
perror("P operation");
return -1;
}
return 0;
}
int sem_v(int sem_id)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1;
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id,&sem_b,1) == -1)
{
perror("V opration");
return -1;
}
return 0;
}
sem_ctl.h文件内容:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define MAX 128
int count; //全局变量,即临界资源
union semun{
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
int init_sem(int sem_id,int init_value);
int del_sem(int sem_id);
int sem_p(int sem_id);
int sem_v(int sem_id);
在应用程序中只要包含sem_ctl.h就可以使用信号量的p、v操作了,下面给出2个c程序同时操作该信号量的情况,类似于:
server.c文件内容如下:
#include "util.h"
#include <signal.h>
int semid;
void sighandler(int signo)
{
del_sem(semid);
exit(0);
}
void server()
{
key_t key;
initcount();
if((key = ftok(".",'e')) == -1)
{
perror("ftok");
exit(1);
}
if((semid = semget(key,1,0666|IPC_CREAT|IPC_EXCL)) == -1)
{
perror("semget");
exit(1);
}
printf("the semid is :%d\n",semid);
init_sem(semid, 0);
signal(SIGINT,sighandler);
signal(SIGUSR1,sighandler);
signal(SIGALRM,sighandler);
while(1)
{
sem_p(semid);
/* do something */
printf("count =%d\n",count++);
sem_v(semid);
sleep(2);
}
}
int main(void)
{
server();
}
client.c文件内容如下:
#include "sem_ctl.h"
void custom()
{
int semid;
key_t key;
if((key = ftok(".",'e')) == -1)
{
perror("ftok");
exit(1);
}
if((semid = semget(key,0,0)) == -1)
{
perror("semget");
exit(1);
}
printf("the semid is :%d\n",semid);
while(1)
{
sem_p(semid); //获得信号量,同一时间只有一个进程能获得该信号量
/* do something */
printf("count =%d\n",count++);
sem_v(semid); //释放信号量
sleep(2);
}
}
int main(void)
{
custom();
}
编译好,运行的时候先运行server再运行client。
‘伍’ linux|进程间通信如何加锁
进程间通信有一种[共享内存]方式,大家有没有想过,这种通信方式中如何解决数据竞争问题?我们可能自然而然的就会想到用锁。但我们平时使用的锁都是用于解决线程间数据竞争问题,貌似没有看到过它用在进程中,那怎么办?
关于进程间的通信方式估计大多数人都知道,这也是常见的面试八股文之一。
个人认为这种面试题没什么意义,无非就是答几个关键词而已,更深入的可能面试官和面试者都不太了解。
关于进程间通信方式我之前在【这篇文章】中有过介绍,感兴趣的可以移步去看哈。
进程间通信有一种[共享内存]方式,大家有没有想过,这种通信方式中如何解决数据竞争问题?
我们可能自然而然的就会想到用锁。但我们平时使用的锁都是用于解决线程间数据竞争问题,貌似没有看到过它用在进程中,那怎么办?
我找到了两种方法,信号量和互斥锁。
直接给大家贴代码吧,首先是信号量方式:
代码中的MEOW_DEFER,它内部的函数会在生命周期结束后触发。它的核心函数其实就是下面这四个:
具体含义大家应该看名字就知道,这里的重点就是sem_init中的pshared参数,该参数为1表示可在进程间共享,为0表示只在进程内部共享。
第二种方式是使用锁,即pthread_mutex_t,可是pthread_mutex不是用作线程间数据竞争的吗,怎么能用在进程间呢?
可以给它配置一个属性,示例代码如下:
它的默认属性是进程内私有,但是如果给它配置成PTHREAD_PROCESS_SHARED,它就可以用在进程间通信中。
相关视频推荐
360度无死角讲解进程管理,调度器的5种实现
Linux进程间通信-信号量、消息队列和共享内存
学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括 C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg 等),免费分享
完整代码如下:
我想这两种方式应该可以满足我们日常开发过程中的大多数需求。
锁的方式介绍完之后,可能很多朋友自然就会想到原子变量,这块我也搜索了一下。但是也不太确定C++标准中的atomic是否在进程间通信中有作用,不过看样子boost中的atomic是可以用在进程间通信中的。
其实在研究这个问题的过程中,还找到了一些很多解决办法,包括:
Disabling Interrupts
Lock Variables
Strict Alternation
Peterson's Solution
The TSL Instruction
Sleep and Wakeup
Semaphores
Mutexes
Monitors
Message Passing
Barriers
这里就不过多介绍啦,大家感兴趣的可以自行查阅资料哈。
‘陆’ Linux进程通信实验(共享内存通信,接上篇)
这一篇记录一下共享内存实验,需要linux的共享内存机制有一定的了解,同时也需要了解POSIX信号量来实现进程间的同步。可以参考以下两篇博客: https://blog.csdn.net/sicofield/article/details/10897091
https://blog.csdn.net/ljianhui/article/details/10253345
实验要求:编写sender和receiver程序,sender创建一个共享内存并等待用户输入,然后把输入通过共享内存发送给receiver并等待,receiver收到后把消息显示在屏幕上并用同样方式向sender发送一个over,然后两个程序结束运行。
这个实验的难点主要在于共享内存的创建和撤销(涉及到的步骤比较多,需要理解各步骤的功能),以及实现两个进程间的相互等待(使用信号量来实现,这里使用了有名信号量)
实验心得:学习理解了linux的共享内存机制以及POSIX信号量机制。
两个实验虽然加强了对linux一些机制的理解,但是感觉对linux的学习还不够,需要继续学习。
‘柒’ Linux信号量
信号量是包含一个非负整数型的变量,并且带有两个原子操作wait和signal。Wait还可以被称为down、P或lock,signal还可以被称为up、V、unlock或post。在UNIX的API中(POSIX标准)用的是wait和post。
对于wait操作,如果信号量的非负整形变量S大于0,wait就将其减1,如果S等于0,wait就将调用线程阻塞;对于post操作,如果有线程在信号量上阻塞(此时S等于0),post就会解除对某个等待线程的阻塞,使其从wait中返回,如果没有线程阻塞在信号量上,post就将S加1.
由此可见,S可以被理解为一种资源的数量,信号量即是通过控制这种资源的分配来实现互斥和同步的。如果把S设为1,那么信号量即可使多线程并发运行。另外,信号量不仅允许使用者申请和释放资源,而且还允许使用者创造资源,这就赋予了信号量实现同步的功能。可见信号量的功能要比互斥量丰富许多。
POSIX信号量是一个sem_t类型的变量,但POSIX有两种信号量的实现机制: 无名信号量 和 命名信号量 。无名信号量只可以在共享内存的情况下,比如实现进程中各个线程之间的互斥和同步,因此无名信号量也被称作基于内存的信号量;命名信号量通常用于不共享内存的情况下,比如进程间通信。
同时,在创建信号量时,根据信号量取值的不同,POSIX信号量还可以分为:
下面是POSIX信号量函数接口:
信号量的函数都以sem_开头,线程中使用的基本信号函数有4个,他们都声明在头文件semaphore.h中,该头文件定义了用于信号量操作的sem_t类型:
【sem_init函数】:
该函数用于创建信号量,原型如下:
该函数初始化由sem指向的信号对象,设置它的共享选项,并给它一个初始的整数值。pshared控制信号量的类型,如果其值为0,就表示信号量是当前进程的局部信号量,否则信号量就可以在多个进程间共享,value为sem的初始值。
该函数调用成功返回0,失败返回-1。
【sem_destroy函数】:
该函数用于对用完的信号量进行清理,其原型如下:
成功返回0,失败返回-1。
【sem_wait函数】:
该函数用于以原子操作的方式将信号量的值减1。原子操作就是,如果两个线程企图同时给一个信号量加1或减1,它们之间不会互相干扰。其原型如下:
sem指向的对象是sem_init调用初始化的信号量。调用成功返回0,失败返回-1。
sem_trywait()则是sem_wait()的非阻塞版本,当条件不满足时(信号量为0时),该函数直接返回EAGAIN错误而不会阻塞等待。
sem_timedwait()功能与sem_wait()类似,只是在指定的abs_timeout时间内等待,超过时间则直接返回ETIMEDOUT错误。
【sem_post函数】:
该函数用于以原子操作的方式将信号量的值加1,其原型如下:
与sem_wait一样,sem指向的对象是由sem_init调用初始化的信号量。调用成功时返回0,失败返回-1。
【sem_getvalue函数】:
该函数返回当前信号量的值,通过restrict输出参数返回。如果当前信号量已经上锁(即同步对象不可用),那么返回值为0,或为负数,其绝对值就是等待该信号量解锁的线程数。
【实例1】:
【实例2】:
之所以称为命名信号量,是因为它有一个名字、一个用户ID、一个组ID和权限。这些是提供给不共享内存的那些进程使用命名信号量的接口。命名信号量的名字是一个遵守路径名构造规则的字符串。
【sem_open函数】:
该函数用于创建或打开一个命名信号量,其原型如下:
参数name是一个标识信号量的字符串。参数oflag用来确定是创建信号量还是连接已有的信号量。
oflag的参数可以为0,O_CREAT或O_EXCL:如果为0,表示打开一个已存在的信号量;如果为O_CREAT,表示如果信号量不存在就创建一个信号量,如果存在则打开被返回,此时mode和value都需要指定;如果为O_CREAT|O_EXCL,表示如果信号量存在则返回错误。
mode参数用于创建信号量时指定信号量的权限位,和open函数一样,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。
value表示创建信号量时,信号量的初始值。
【sem_close函数】:
该函数用于关闭命名信号量:
单个程序可以用sem_close函数关闭命名信号量,但是这样做并不能将信号量从系统中删除,因为命名信号量在单个程序执行之外是具有持久性的。当进程调用_exit、exit、exec或从main返回时,进程打开的命名信号量同样会被关闭。
【sem_unlink函数】:
sem_unlink函数用于在所有进程关闭了命名信号量之后,将信号量从系统中删除:
【信号量操作函数】:
与无名信号量一样,操作信号量的函数如下:
命名信号量是随内核持续的。当命名信号量创建后,即使当前没有进程打开某个信号量,它的值依然保持,直到内核重新自举或调用sem_unlink()删除该信号量。
无名信号量的持续性要根据信号量在内存中的位置确定:
很多时候信号量、互斥量和条件变量都可以在某种应用中使用,那这三者的差异有哪些呢?下面列出了这三者之间的差异:
‘捌’ linux进程间信号量的分配释放
和用于分配、释放共享内存的 shmget 和 shmctl 类似,系统调用 semget 和 semctl 负责分配、释放信号量。调用 semget 函数并传递如下参数:一个用于标识信号量组的键值,该组中包含的信号量数量和与 shmget 所需的相同的权限位标识。该函数返回的是信号量组的标识符。您可以通过指定正确的键值来获取一个已经存在的信号量的标识符;这种情况下,传递的信号量组的容量可以为0。
信号量会一直保存在系统中,甚至所有使用它们的进程都退出后也不会自动被销毁。最后一个使用信号量的进程必须明确地删除所使用的信号量组,来确保系统中不会有太多闲置的信号量组,从而导致无法创建新的信号量组。可以通过调用semctl来删除信号量组。调用时的四个参数分别为信号量组的标识符,操作的信号量在组中的编号、常量IPC_RMID 和一个 union semun 类型的任意值(被忽略)。调用进程的有效用户 id 必须与分配这个信号量组的用户 id 相同(或者调用进程为 root 权限亦可)。与共享内存不同,删除一个信号量组会导致 Linux 立即释放资源。
代码 5.2 展示了用于分配和释放一个二元信号量的函数。
代码 5.2 (sem_all_deall.c)分配和释放二元信号量
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h> /* 我们必须自己定义 semun 联合类型。 */
union semun { int val; struct semid_ds *buf; unsigned short int *array; struct seminfo *__buf; };
/* 获取一个二元信号量的标识符。如果需要则创建这个信号量 */
int binary_semaphore_allocation (key_t key, int sem_flags)
{
return semget (key, 1, sem_flags);
} /* 释放二元信号量。所有用户必须已经结束使用这个信号量。如果失败,返回 -1 */
int binary_semaphore_deallocate (int semid)
{
union semun ignored_argument; return semctl (semid, 1, IPC_RMID, ignored_argument);
}
‘玖’ linux进程间通信 socket 共享内存 哪个快
进程间通讯进程间通信就是不同进程之间传播或交换信息,进程的用户空间是互相独立的,进程之间可以利用系统空间交换信息。 管道(pipe)管道是一种半双工的通信方式,数据只能单向流动。如果要进行双工通信,需要建立两个管道。 管道只能在具有亲缘关系的进程间使用,例如父子进程或兄弟进程。 有名管道(named pipe) 有名管道也是双半工的通信方式,但它允许无亲缘关系的进程间使用。 信号量(semophore) 信号量常用来作为一种锁机制来使用,它是一个记数器,用来控制多进程对共享资源的访问,防止多个进程同时访问一个共享资源。信号量主要用作为进程间或同一进程间不同线程之间的同步手段。 信号(sinal) 信号是一种比较复杂的通信方式,用于通知接收进程某些事件已经发生,要注意信号处理中调用的函数是否为信号安全。 消息队列(message queue) 消息队列是由消息的链表组成,存放在内核中并由消息队列标识符标识。 共享内存(shared memory) 共享内存就是映射一段被其他进程所访问的内存,这段共享内存由一个进程创建,可由多个进程访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式的低运行效率而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 套接字(socket) 套接字也是进程间通信的一种方式,与其他方式不同的是,它可以用在不同主机间的进程通信(也是它的主要用途)。 几种方式的缺点 管道: 速度慢,容量有限,只能用于亲缘关系进程间通信。 有名管道: 同管道,不过允许无亲缘关系进程间通信。 消息队列: 容量受系统限制,队列中会遗留数据,读时要考虑到这些未读完的数据。 信号量: 主要用于同步,无法传递复杂的数据信息。
‘拾’ Linux 中有名信号量,异常关闭其他线程如何获取
linux下进程间同步的机制有以下三种:
信号量
记录锁(文件锁)
共享内存中的mutex
效率上 共享内存mutex > 信号量 > 记录锁
posix 提供了新的信号量 - 有名信号量,既可以使用在进程间同步也可以作为线程间同步的手段。效率比共享内存mutex要好一些