当前位置:首页 » 操作系统 » 模拟进程调度算法

模拟进程调度算法

发布时间: 2023-06-03 19:12:57

⑴ 进程调度算法是什么

调度算法是指:根据系统的资源分配策略所规定的资源分配算法。
一、先来先服务和短作业(进程)优先调度算法

1. 先来先服务调度算法。先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度, 也可用于进程调度。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。由此可知,本算法适合于CPU繁忙型作业, 而不利于I/O繁忙型的作业(进程)。
2. 短作业(进程)优先调度算法。短作业(进程)优先调度算法(SJ/PF)是指对短作业或短进程优先调度的算法,该算法既可用于作业调度, 也可用于进程调度。但其对长作业不利;不能保证紧迫性作业(进程)被及时处理;作业的长短只是被估算出来的。

二、高优先权优先调度算法

1. 优先权调度算法的类型。为了照顾紧迫性作业,使之进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。 此算法常被用在批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度,还可以用于实时系统中。当其用于作业调度, 将后备队列中若干个优先权最高的作业装入内存。当其用于进程调度时,把处理机分配给就绪队列中优先权最高的进程,此时, 又可以进一步把该算法分成以下两种:
1)非抢占式优先权算法
2)抢占式优先权调度算法(高性能计算机操作系统)
2. 优先权类型 。对于最高优先权优先调度算法,其核心在于:它是使用静态优先权还是动态优先权, 以及如何确定进程的优先权。
3. 高响应比优先调度算法
为了弥补短作业优先算法的不足,我们引入动态优先权,使作业的优先等级随着等待时间的增加而以速率a提高。 该优先权变化规律可描述为:优先权=(等待时间+要求服务时间)/要求服务时间;即 =(响应时间)/要求服务时间

三、基于时间片的轮转调度算法

1. 时间片轮转法。时间片轮转法一般用于进程调度,每次调度,把CPU分配队首进程,并令其执行一个时间片。 当执行的时间片用完时,由一个记时器发出一个时钟中断请求,该进程被停止,并被送往就绪队列末尾;依次循环。 2. 多级反馈队列调度算法 多级反馈队列调度算法多级反馈队列调度算法,不必事先知道各种进程所需要执行的时间,它是目前被公认的一种较好的进程调度算法。 其实施过程如下:
1) 设置多个就绪队列,并为各个队列赋予不同的优先级。在优先权越高的队列中, 为每个进程所规定的执行时间片就越小。
2) 当一个新进程进入内存后,首先放入第一队列的末尾,按FCFS原则排队等候调度。 如果他能在一个时间片中完成,便可撤离;如果未完成,就转入第二队列的末尾,在同样等待调度…… 如此下去,当一个长作业(进程)从第一队列依次将到第n队列(最后队列)后,便按第n队列时间片轮转运行。
3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1到第(i-1)队列空时, 才会调度第i队列中的进程运行,并执行相应的时间片轮转。
4) 如果处理机正在处理第i队列中某进程,又有新进程进入优先权较高的队列, 则此新队列抢占正在运行的处理机,并把正在运行的进程放在第i队列的队尾。

⑵ 进程调度算法模拟程序设计

这么有技术含量的问题,应该要更有技术含量的回答,你给个30分悬赏,高手都不睬你~!

⑶ 进程调度算法

算法原理: 就是谁先来谁就先执行

算法优点 :易于理解且实现简单,只需要一个队列,公平
算法缺点 :有利于长进程,不利于短进程,有利于CPU 繁忙的进程,不利于I/O 繁忙的进程

算法原理: 对预计执行时间短的进程优先执行。
算法优点 :相比FCFS 算法,该算法可改善平均周转时间和平均带权周转时间,缩短进程的等待时间,提高系统的吞吐量。
算法缺点: 对长进程不利,可能长时间得不到执行产生饥饿,不能判断执行的优先级。

算法原理: 同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。响应比R定义: R =(W+T)/T = 1+W/T
T为该作业估计需要的执行时间,W为作业在后备状态队列中的等待时间。执行之前系统计算每个作业的响应比,选择其中R最大者执行。这种算法是介于前面两种之间的一种折中算法。
算法优点: 长作业也有机会投入运行,避免了饥饿。
算法缺点: 每次调度前要计算响应比,增加系统开销。

算法原理: 设置一个时间片,每个进程轮流使用时间片,若一个时间片内进程还没结束,也会被其他的进程抢占时间片而退出执行,进入等待队列。
算法优点: 简单易行、平均响应时间短。
算法缺点: 不利于处理紧急作业。时间片的大小的设置对系统性能的影响很大,因此时间片的大小应选择恰当

算法原理: 根据优先级的来判断执行哪个进程。可以分为静态优先级和动态优先级,即优先级可以根据情况改变。比如如果一个进程等了很久,我们就可以把他的优先级适当的提高。

算法优点 :可以优先处理紧急事件,适用于实时操作系统。

算法缺点 :可能导致那些优先级低的进程饥饿。

UNIX操作系统采取的便是这种调度算法。
算法原理

实现先说明执行队列优先级Q1>Q2>Q3.......>Qn,分配的时间片Qn>Qn-1>...Q1.

进程在进入待调度的队列等待时,首先进入优先级最高的队列Q1等待。若在Q1队列里面还没执行完,则下放到Q2里面,等Q1里面的进程都执行完了之后再执行Q2。以此类推。
若在低优先级的队列中的进程在运行时,又有新到达的作业,那么在运行完这个时间片后,CPU马上分配给新到达的作业(抢占式)。
在多级反馈队列调度算法中,规定第一个队列的时间片略大于多数人机交互所需之处理时间时,能够较好的满足各种类型用户的需要。

⑷ 用c语言编写并调试一个模拟的进程调度程序,采用“简单时间片轮转法”调度算法对五个进程进行调度。

#include "stdio.h"
#include "stdlib.h"
#include "string.h"

struct PCB {
char NAME[10]; /*进程名*/
int ROUND; /*进程轮转时间片*/
int REACHTIME; /*进程到达时间*/
int CPUTIME; /*进程占用CPU时间*/
int COUNT; /*计数器*/
int NEEDTIME; /*进程完成还要的CPU时间*/
char STATE; /*进程的状态*/
struct PCB *NEXT; /*链指针*/
};

struct LINK { /*PCB的链结构*/
struct PCB *RUN; /*当前运行进程指针*/
struct PCB *READY; /*就绪队列头指针*/
struct PCB *TAIL; /*就绪队列尾指针*/
struct PCB *FINISH; /*完成队列头指针*/
};

void INIT(LINK *); /*对PCB的链结构初始化*/
void INSERT(LINK *); /*将执行了一个单位时间片数且还未完成的进程的PCB插到就绪队列的队尾*/
void FIRSTIN(LINK *); /*将就绪队列中的第一个进程投入运行*/
void PRINT(LINK *); /*打印每执行一个时间片后的所有进程的状态*/
void PR(PCB *); /*打印一个进程的状态*/
int CREATE(LINK *,int); /*创建新的进程*/
void ROUNDSCH(LINK *); /*按时间片轮转法调度进程*/

void main() {
LINK pcbs;
int i;
INIT(&pcbs);
i=0;
printf("创建5个进程\n\n");
while(i<5) {
if(CREATE(&pcbs,i+1)==1) {
printf("进程已创建\n\n");
i++;
}
else
printf("进程创建失败\n\n");
}
FIRSTIN(&pcbs);
ROUNDSCH(&pcbs);
}

void ROUNDSCH(LINK *p) {
PCB *pcb;
while(p->RUN!=NULL) {
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
pcb->CPUTIME++;
pcb->NEEDTIME--;
pcb->COUNT++;
if(pcb->NEEDTIME==0) {
pcb->NEXT=p->FINISH->NEXT;
p->FINISH->NEXT=pcb;
pcb->STATE='F';
p->RUN=NULL;
if(p->READY!=p->TAIL)
FIRSTIN(p);
}
else {
p->RUN=pcb;
if(pcb->COUNT==pcb->ROUND) {
pcb->COUNT=0;
if(p->READY!=p->TAIL) {
pcb->STATE='W';
INSERT(p);
FIRSTIN(p);
}
}
}
PRINT(p);
}
}

void INIT(LINK *p) {
p->RUN=NULL;
p->TAIL=p->READY=(PCB *)malloc(sizeof(PCB));
p->READY->NEXT=NULL;
p->FINISH=(PCB *)malloc(sizeof(PCB));
p->FINISH->NEXT=NULL;
}

int CREATE(LINK *p,int n) {
PCB *pcb,*q;
pcb=(PCB *)malloc(sizeof(PCB));
flushall();
printf("请输入第%d个进程的名称:\n",n);
gets(pcb->NAME);
printf("请输入第%d个进程的轮转时间片数:\n",n);
scanf("%d",&(pcb->ROUND));
printf("请输入第%d个进程的到达时间:\n",n);
scanf("%d",&(pcb->REACHTIME));
pcb->CPUTIME=0;
pcb->COUNT=0;
printf("请输入第%d个进程需运行的时间片数:\n",n);
scanf("%d",&(pcb->NEEDTIME));
pcb->STATE='W';
pcb->NEXT=NULL;
if(strcmp(pcb->NAME,"")==0||pcb->ROUND<=0||pcb->NEEDTIME<=0) /*输入错误*/
return 0;
q=p->READY;
while(q->NEXT!=NULL&&q->NEXT->REACHTIME<=pcb->REACHTIME)
q=q->NEXT;
pcb->NEXT=q->NEXT;
q->NEXT=pcb;
if(pcb->NEXT==NULL)
p->TAIL=pcb;
return 1;
}

void FIRSTIN(LINK *p) {
PCB *q;
q=p->READY->NEXT;
p->READY->NEXT=q->NEXT;
q->NEXT=NULL;
if(p->READY->NEXT==NULL)
p->TAIL=p->READY;
q->STATE='R';
p->RUN=q;
}

void INSERT(LINK *p) {
PCB *pcb;
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
p->TAIL->NEXT=pcb;
p->TAIL=pcb;
p->RUN=NULL;
pcb->STATE='W';
}

void PRINT(LINK *p) {
PCB *pcb;
printf("执行一个时间片后的所有进程的状态:\n\n");
if(p->RUN!=NULL)
PR(p->RUN);
if(p->READY!=p->TAIL) {
pcb=p->READY->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}
pcb=p->FINISH->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}

void PR(PCB *p) {
printf("进程名:%s\n",p->NAME);
printf("进程轮转时间片:%d\n",p->ROUND);
printf("进程到达时间:%d\n",p->REACHTIME);
printf("进程占用CPU时间:%d\n",p->CPUTIME);
printf("计数器:%d\n",p->COUNT);
printf("进程完成还要的CPU时间:%d\n",p->NEEDTIME);
printf("进程的状态:%c\n\n",p->STATE);
}

⑸ 求编程模拟进程调度算法,c语言版,要求用先来先服务。

先来先服务:用队列来实现,至于是循环队列,链队还是顺序队列,那要看具体问题决定
进程调度:可以将要处理的任务集成为函数,并定义函数指针,最后将指针入队就行了

说白了,就是对队列的各种操作~~~

⑹ 1.选用优先级算法和时间片轮转算法模拟实现进程调度算法

我们考试上交的 能运行

#define MAX 100
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int b;//存放进程本次结束时的时间
void main()
{
int i,N,t,k;
int a[MAX];//存放进程的剩余时间
int cnt[MAX];//存放进程调度次数
printf("请输入进程数N:");
scanf("%d",&N);
printf("\n请输入时间片t大小:");
scanf("%d",&t);
printf("\n请依次输入各个进程的服务时间");
for(i=0;i<N;i++)
{
scanf("%d",&a[i]);
cnt[i]=0;
}
printf("被调度进程\t进程调度次数 \t本次运行时间结果\t剩余时间\n");
k=1;
while(k)
{
for(i=0;i<N;i++)
{
if(a[i]!=0)
if(a[i]>=t)
{
a[i]-=t;
b+=t;
cnt[i]=cnt[i]+1;
printf("\n\t%d\t\t%d\t\t%d\t\t%d",i+1,cnt[i],b,a[i]);
}
else
{
b=b+a[i];
cnt[i]=cnt[i]+1;
a[i]=0;
printf("\n\t%d\t\t%d\t\t%d\t\t%d",i+1,cnt[i],b,a[i]);
}
else continue;
}
for(i=0;i<N;i++)
if(a[i]!=0)
{ k=1;break;}
else continue;
if(i>=N)
k=0;
}
printf("\n");
printf("进程全部运行完成!");
printf("\n");

}

⑺ 进程调度算法

调度算指:根据系统资源配策略所规定资源配算
、先先服务短作业(进程)优先调度算
1.
先先服务调度算先先服务(FCFS)调度算种简单调度算该算既用于作业调度
用于进程调度FCFS算比较利于作业(进程)利于短作业(进程)由知本算适合于CPU繁忙型作业
利于I/O繁忙型作业(进程)
2.
短作业(进程)优先调度算短作业(进程)优先调度算(SJ/PF)指短作业或短进程优先调度算该算既用于作业调度
用于进程调度其作业利;能保证紧迫性作业(进程)及处理;作业短估算
二、高优先权优先调度算
1.
优先权调度算类型照顾紧迫性作业使进入系统便获优先处理引入高优先权优先(FPF)调度算
算用批处理系统作作业调度算作种操作系统进程调度用于实系统其用于作业调度
备队列若干优先权高作业装入内存其用于进程调度处理机配给绪队列优先权高进程
进步该算两种:
1)非抢占式优先权算
2)抢占式优先权调度算(高性能计算机操作系统)
2.
优先权类型
于高优先权优先调度算其核于:使用静态优先权态优先权
及何确定进程优先权
3.
高响应比优先调度算
弥补短作业优先算足我引入态优先权使作业优先等级随着等待间增加速率a提高
该优先权变化规律描述:优先权=(等待间+要求服务间)/要求服务间;即
=(响应间)/要求服务间
三、基于间片轮转调度算
1.
间片轮转间片轮转般用于进程调度每调度CPU配队首进程并令其执行间片
执行间片用完由记器发钟断请求该进程停止并送往绪队列末尾;依循环
2.
级反馈队列调度算
级反馈队列调度算级反馈队列调度算必事先知道各种进程所需要执行间目前公认种较进程调度算
其实施程:
1)
设置绪队列并各队列赋予同优先级优先权越高队列
每进程所规定执行间片越
2)
新进程进入内存首先放入第队列末尾按FCFS原则排队等候调度
能间片完便撤离;未完转入第二队列末尾同等待调度……
作业(进程)第队列依第n队列(队列)便按第n队列间片轮转运行
3)
仅第队列空闲调度程序才调度第二队列进程运行;仅第1第(i-1)队列空
才调度第i队列进程运行并执行相应间片轮转
4)
处理机处理第i队列某进程新进程进入优先权较高队列
则新队列抢占运行处理机并运行进程放第i队列队尾

热点内容
雪铁龙凡尔赛选哪个配置 发布:2024-05-06 06:56:04 浏览:570
福睿斯配置怎么样 发布:2024-05-06 06:50:16 浏览:102
微生物数据库 发布:2024-05-06 06:47:33 浏览:604
原神和steam游戏哪个需要配置 发布:2024-05-06 06:37:40 浏览:665
nginx访问403 发布:2024-05-06 05:56:39 浏览:677
android上传图片参数 发布:2024-05-06 05:56:04 浏览:221
360控制上传流量 发布:2024-05-06 05:38:11 浏览:999
几代算法 发布:2024-05-06 05:33:43 浏览:353
安卓怎么查看iculd照片 发布:2024-05-06 05:18:24 浏览:91
shell脚本减法 发布:2024-05-06 05:18:22 浏览:353