linux性能工具
❶ linux中哪些工具可以测试cuda程序,监控gpu内存性能
nvcc 编译代码
nvcc -o squareSum squareSum.cu运行结果:
CUDA initialized.
(GPU) sum:29909398 time:787124792
(CPU) sum:29909398 time:10000
从执行的结果可以看出, GPU 中运行的程序居然要比 CPU 中的消耗的时钟周期还要多得多。这是有原因的。
因为程序之中并没有使用 CUDA 并行执行的优势。
这里分析一下 GPU 运行的性能。
此 GPU 消耗的时钟周期: 787124792 cycles
GeForce G 103M 的 clockRate: 1.6 GHz
所以可以计算出 GPU 上运行时间是: 时钟周期 / clockRate = 0.49195 s
1 M 个 int 型数据有 4M Byte 的数据量,实际使用的 GPU 内存带宽是:数据量 / 运行时间 = 8.13 MB/s
可见这个程序没有很好的发挥 GPU 的性能,使用的内存带宽很小。
没有有效利用 GPU 性能的原因???
在 CUDA 中,一般的数据复制到的显卡内存的部份,称为 global memory。这些内存是没有 cache 的,而且,存取 global memory 所需要的时间(即 latency)是非常长的,通常是数百个 cycles。
由于我们的程序只有一个 thread,所以每次它读取 global memory 的内容,就要等到实际读取到数据、累加到 sum 之后,才能进行下一步。这就是为什么它的表现会这么的差。实际上 GPU 一直在等待上一个数据运行的结束,然后再拷贝一个内存数据,所以使用的时钟周期自然就长了。
由于 global memory 没有 cache,所以要避开巨大的 latency 的方法,就是要利用大量的 threads。假设现在有大量的 threads 在同时执行,那么当一个 thread 读取内存,开始等待结果的时候,GPU 就可以立刻切换到下一个 thread,并读取下一个内存位置。因此,理想上当 thread 的数目够多的时候,就可以完全把 global memory 的巨大 latency 隐藏起来了。
❷ 如何查看linux的cpu使用率
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器
可以直接使用top命令后,查看%MEM的内容。可以选择按进程查看或者按用户查看,如想查看oracle用户的进程内存使用情况的话可以使用如下的命令:
$ top -u oracle
2. 释义:
PID:进程的ID
USER:进程所有者
PR:进程的优先级别,越小越优先被执行
NInice:值
VIRT:进程占用的虚拟内存
RES:进程占用的物理内存
SHR:进程使用的共享内存
S:进程的状态。S表示休眠,R表示正在运行,Z表示僵死状态,N表示该进程优先值为负数
%CPU:进程占用CPU的使用率
%MEM:进程使用的物理内存和总内存的百分比
TIME+:该进程启动后占用的总的CPU时间,即占用CPU使用时间的累加值。
COMMAND:进程启动命令名称
3.操作实例:
在命令行中输入 逗top地
即可启动 top
top 的全屏对话模式可分为3部分:系统信息栏、命令输入栏、进程列表栏。
第一部分 -- 最上部的 系统信息栏 :
第一行(top):
逗00:11:04地为系统当前时刻;
逗3:35地为系统启动后到现在的运作时间;
逗2 users地为当前登录到系统的用户,更确切的说是登录到用户的终端数 -- 同一个用户同一时间对系统多个终端的连接将被视为多个用户连接到系统,这里的用户数也将表现为终端的数目;
逗load average地为当前系统负载的平均值,后面的三个值分别为1分钟前、5分钟前、15分钟前进程的平均数,一般的可以认为这个数值超过 CPU 数目时,CPU 将比较吃力的负载当前系统所包含的进程;
第二行(Tasks):
逗59 total地为当前系统进程总数;
逗1 running地为当前运行中的进程数;
逗58 sleeping地为当前处于等待状态中的进程数;
逗0 stoped地为被停止的系统进程数;
逗0 zombie地为被复原的进程数;
第三行(Cpus):
分别表示了 CPU 当前的使用率;
第四行(Mem):
分别表示了内存总量、当前使用量、空闲内存量、以及缓冲使用中的内存量;
第五行(Swap):
表示类别同第四行(Mem),但此处反映着交换分区(Swap)的使用情况。通常,交换分区(Swap)被频繁使用的情况,将被视作物理内存不足而造成的。
第二部分 -- 中间部分的内部命令提示栏:
top 运行中可以通过 top 的内部命令对进程的显示方式进行控制。内部命令如下表:
s
- 改变画面更新频率
l - 关闭或开启第一部分第一行 top 信息的表示
t - 关闭或开启第一部分第二行 Tasks 和第三行 Cpus 信息的表示
m - 关闭或开启第一部分第四行 Mem 和 第五行 Swap 信息的表示
N - 以 PID 的大小的顺序排列表示进程列表(第三部分后述)
P - 以 CPU 占用率大小的顺序排列进程列表 (第三部分后述)
M - 以内存占用率大小的顺序排列进程列表 (第三部分后述)
h - 显示帮助
n - 设置在进程列表所显示进程的数量
q - 退出 top
s -
改变画面更新周期
第三部分 -- 最下部分的进程列表栏:
以 PID 区分的进程列表将根据所设定的画面更新时间定期的更新。通过 top 内部命令可以控制此处的显示方式
pmap
可以根据进程查看进程相关信息占用的内存情况,(进程号可以通过ps查看)如下所示:
$ pmap -d 5647
ps
如下例所示:
$ ps -e -o 'pid,comm,args,pcpu,rsz,vsz,stime,user,uid' 其中rsz是是实际内存
$ ps -e -o 'pid,comm,args,pcpu,rsz,vsz,stime,user,uid' | grep oracle | sort -nrk
其中rsz为实际内存,上例实现按内存排序,由大到小
在Linux下查看内存我们一般用free命令:
[root@scs-2 tmp]# free
total used free shared buffers cached
Mem: 3266180 3250004 16176 0 110652 2668236
-/+ buffers/cache: 471116 2795064
Swap: 2048276 80160 1968116
下面是对这些数值的解释:
total:总计物理内存的大小。
used:已使用多大。
free:可用有多少。
Shared:多个进程共享的内存总额。
Buffers/cached:磁盘缓存的大小。
第三行(-/+ buffers/cached):
used:已使用多大。
free:可用有多少。
第四行就不多解释了。
区别:第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。 这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,所以他的可用内存是16176KB,已用内存是3250004KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached.
第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。
所以从应用程序的角度来说,可用内存=系统free memory+buffers+cached。
如上例:
2795064=16176+110652+2668236
接下来解释什么时候内存会被交换,以及按什么方交换。 当可用内存少于额定值的时候,就会开会进行交换。
如何看额定值:
cat /proc/meminfo
[root@scs-2 tmp]# cat /proc/meminfo
MemTotal: 3266180 kB
MemFree: 17456 kB
Buffers: 111328 kB
Cached: 2664024 kB
SwapCached: 0 kB
Active: 467236 kB
Inactive: 2644928 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 3266180 kB
LowFree: 17456 kB
SwapTotal: 2048276 kB
SwapFree: 1968116 kB
Dirty: 8 kB
Writeback: 0 kB
Mapped: 345360 kB
Slab: 112344 kB
Committed_AS: 535292 kB
PageTables: 2340 kB
VmallocTotal: 536870911 kB
VmallocUsed: 272696 kB
VmallocChunk: 536598175 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 2048 kB
用free -m查看的结果:
[root@scs-2 tmp]# free -m
total used free shared buffers cached
Mem: 3189 3173 16 0 107 2605
-/+ buffers/cache: 460 2729
Swap: 2000 78 1921
查看/proc/kcore文件的大小(内存镜像):
[root@scs-2 tmp]# ll -h /proc/kcore
-r-------- 1 root root 4.1G Jun 12 12:04 /proc/kcore
备注:
占用内存的测量
测量一个进程占用了多少内存,linux为我们提供了一个很方便的方法,/proc目录为我们提供了所有的信息,实际上top等工具也通过这里来获取相应的信息。
/proc/meminfo 机器的内存使用信息
/proc/pid/maps pid为进程号,显示当前进程所占用的虚拟地址。
/proc/pid/statm 进程所占用的内存
[root@localhost ~]# cat /proc/self/statm
654 57 44 0 0 334 0
输出解释
CPU 以及CPU0。。。的每行的每个参数意思(以第一行为例)为:
参数 解释 /proc//status
Size (pages) 任务虚拟地址空间的大小 VmSize/4
Resident(pages) 应用程序正在使用的物理内存的大小 VmRSS/4
Shared(pages) 共享页数 0
Trs(pages) 程序所拥有的可执行虚拟内存的大小 VmExe/4
Lrs(pages) 被映像到任务的虚拟内存空间的库的大小 VmLib/4
Drs(pages) 程序数据段和用户态的栈的大小 (VmData+ VmStk )4
dt(pages) 04
查看机器可用内存
/proc/28248/>free
total used free shared buffers cached
Mem: 1023788 926400 97388 0 134668 503688
-/+ buffers/cache: 288044 735744
Swap: 1959920 89608 1870312
我们通过free命令查看机器空闲内存时,会发现free的值很小。这主要是因为,在linux中有这么一种思想,内存不用白不用,因此它尽可能的cache和buffer一些数据,以方便下次使用。但实际上这些内存也是可以立刻拿来使用的。
所以 空闲内存=free+buffers+cached=total-used
top命令 是Linux下常用的性能 分析工具 ,能够实时显示系统 中各个进程的资源占用状况,类似于Windows的任务管理 器。下面详细介绍它的使用方法。
top - 02:53:32 up 16 days, 6:34, 17 users, load average: 0.24, 0.21, 0.24
Tasks: 481 total, 3 running, 474 sleeping, 0 stopped, 4 zombie
Cpu(s): 10.3%us, 1.8%sy, 0.0%ni, 86.6%id, 0.5%wa, 0.2%hi, 0.6%si, 0.0%st
Mem: 4042764k total, 4001096k used, 41668k free, 383536k buffers
Swap: 2104472k total, 7900k used, 2096572k free, 1557040k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32497 jacky 20 0 669m 222m 31m R 10 5.6 29:27.62 firefox
4788 yiuwing 20 0 257m 18m 13m S 5 0.5 5:42.44 konsole
5657 Liuxiaof 20 0 585m 159m 30m S 4 4.0 5:25.06 firefox
4455 xiefc 20 0 542m 124m 30m R 4 3.1 7:23.03 firefox
6188 Liuxiaof 20 0 191m 17m 13m S 4 0.5 0:01.16 konsole
统计信息区前五行是系统整体的统计信息。第一行是任务队列信息,同 uptime 命令的执行结果。其内容如下:
01:06:48 当前时间
up 1:22 系统运行 时间,格式为时:分
1 user 当前登录用户 数
load average: 0.06, 0.60, 0.48 系统负载 ,即任务队列的平均长度。
三个数值分别为 1分钟、5分钟、15分钟前到现在的平均值。
第二、三行为进程和CPU的信息。当有多个CPU时,这些内容可能会超过两行。内容如下:
Tasks: 29 total 进程总数
1 running 正在运行的进程数
28 sleeping 睡眠的进程数
0 stopped 停止的进程数
0 zombie 僵尸进程数
Cpu(s): 0.3% us 用户空间占用CPU百分比
1.0% sy 内核 空间占用CPU百分比
0.0% ni 用户进程空间内改变过优先级的进程占用CPU百分比
98.7% id 空闲CPU百分比
0.0% wa 等待输入输出的CPU时间百分比
0.0% hi
0.0% si
最后两行为内存 信息。内容如下:
Mem: 191272k total 物理内存总量
173656k used 使用的物理内存总量
17616k free 空闲内存总量
22052k buffers 用作内核缓存 的内存量
Swap: 192772k total 交换区总量
0k used 使用的交换区总量
192772k free 空闲交换区总量
123988k cached 缓冲的交换区总量。
内存中的内容被换出到交换区,而后又被换入到内存,但使用过的交换区尚未被覆盖,
该数值即为这些内容已存在于内存中 的交换区的大小。
相应的内存再次被换出时可不必再对交换区写入。
进程信息区统计信息区域的下方显示了各个进程的详细信息。首先来认识一下各列的含义。
序号 列名 含义
a PID 进程id
b PPID 父进程id
c RUSER Real user name
d UID 进程所有者的用户id
e USER 进程所有者的用户名
f GROUP 进程所有者的组名
g TTY 启动进程的终端名。不是从终端启动的进程则显示为 ?
h PR 优先级
i NI nice值。负值表示高优先级,正值表示低优先级
j P 最后使用的CPU,仅在多CPU环境 下有意义
k %CPU 上次更新到现在的CPU时间占用百分比
l TIME 进程使用的CPU时间总计,单位秒
m TIME+ 进程使用的CPU时间总计,单位1/100秒
n %MEM 进程使用的物理内存 百分比
o VIRT 进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES
p SWAP 进程使用的虚拟内存中,被换出的大小,单位kb。
q RES 进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA
r CODE 可执行代码占用的物理 内存大小,单位kb
s DATA 可执行代码以外的部分(数据 段+栈)占用的物理 内存大小,单位kb
t SHR 共享内存大小,单位kb
u nFLT 页面错误次数
v nDRT 最后一次写入到现在,被修改过的页面数。
w S 进程状态。
D =不可中断的睡眠状态
R =运行
S =睡眠
T =跟踪/停止
Z =僵尸进程
x COMMAND 命令名/命令行
y WCHAN 若该进程在睡眠,则显示睡眠中的系统函数名
z Flags 任务标志,参考 sched.h
默认情况下仅显示比较重要的 PID、USER、PR、NI、VIRT、RES、SHR、S、%CPU、%MEM、TIME+、COMMAND 列。可以通过下面的快捷键来更改显示内容。
更改显示内容通过 f 键可以选择显示的内容。按 f 键之后会显示列的列表,按 a-z 即可显示或隐藏对应的列,最后按回车键确定。
按 o 键可以改变列的显示顺序。按小写的 a-z 可以将相应的列向右移动,而大写的 A-Z 可以将相应的列向左移动。最后按回车键确定。
按大写的 F 或 O 键,然后按 a-z 可以将进程按照相应的列进行排序。而大写的 R 键可以将当前的排序倒转。
==============================
top命令使用过程中,还可以使用一些交互的命令来完成其它参数的功能。这些命令是通过快捷键启动的。
<空格>:立刻刷新。
P:根据CPU使用大小进行排序。
T:根据时间、累计时间排序。
q:退出top命令。
m:切换显示内存信息。
t:切换显示进程和CPU状态信息。
c:切换显示命令名称和完整命令行。
M:根据使用内存大小进行排序。
W:将当前设置写入~/.toprc文件中。这是写top配置文件的推荐方法。
可以看到,top命令是一个功能十分强大的监控系统的工具,对于系统管理员而言尤其重要。但是,它的缺点是会消耗很多系统资源。
应用实例
使用top命令可以监视指定用户,缺省情况是监视所有用户的进程。如果想查看指定用户的情况,在终端中按逗U地键,然后输入用户名,系统就会切换为指定用户的进程运行界面。
a.作用
free命令用来显示内存的使用情况,使用权限是所有用户。
b.格式
free [-b-k-m] [-o] [-s delay] [-t] [-V]
c.主要参数
-b -k -m:分别以字节(KB、MB)为单位显示内存使用情况。
-s delay:显示每隔多少秒数来显示一次内存使用情况。
-t:显示内存总和列。
-o:不显示缓冲区调节列。
d.应用实例
free命令是用来查看内存使用情况的主要命令。和top命令相比,它的优点是使用简单,并且只占用很少的系统资源。通过-S参数可以使用free命令不间断地监视有多少内存在使用,这样可以把它当作一个方便实时监控器。
#free -b -s5
使用这个命令后终端会连续不断地报告内存使用情况(以字节为单位),每5秒更新一次。
❸ 如何基准测试Linux PC的性能
基准测试是一项测试或一系列测试,用来确定某个计算机硬件运行起来的状况有多好。在许多情况下,“基准测试”实际上等同于“压力测试”。通过测试硬件的极限,然后可以将测得的结果与其他硬件测得的结果作一番比较。
大多数基准测试旨在模拟 PC 在实际情形下遇到的那种工作负载。正因为如此,基准测试几乎就是获得定量数据、了解系统性能如何的唯一方法――如果你的数据差强人意,这表明应该升级部分PC部件。
所以,准备好测试你自己的 PC 了吗?下面是可供 Linux 用户使用的一些比较实用的基准测试。
一、一体化基准测试
一体化基准测试工具又叫基准测试套件,恰如其名:它们测试和衡量系统的各个方面,而不是专注于某一个特定的硬件,如果你不想用三四个不同的工具搞乱系统,这很有用。
1、Phoronix 测试套件
Phoronix 测试套件是最知名的一体化 Linux 基准测试解决方案之一。有一些人声称,它有许多固有的问题;当然,我们不会说它在各方面完美无缺,但是它对大多数用户来说足够好。另外,外面值得一用的替代套件并不多。
Phoronix 可使用 100 多个不同的测试套件(即一组组单项测试)和 450 多个不同的测试配置文件。你可以选择只安装所需的那部分,所以如果你只关注处理器和普通硬盘基准测试,那么只要安装“Processor_Tests”和“Disk_Tests”。它还支持系统日志和报告。
最棒的是,Phoronix 是自由而开源的。它还提供 Live CD 这种形式,名为 PTS Desktop Live,让你可以直接从 CD、DVD 或 U 盘来运行,所以你可以在需要时使用“干净”的操作系统,测试任何机器的硬件。
2、Stress-ng
你可能从名称中猜得,stress-ng 是真正的压力测试――它极其适合测试系统的极限,但是由于它要求很严苛,我们不建议经常运行它。如果反复接受压力测试,某些部件(尤其是处理器和普通硬盘)会损耗得更快。
将 stress-ng 安装到 Debian 和 Ubuntu 上:
sudo apt-get install stress-ng
将 stress-ng 安装到 Fedora、Red Hat 和 CentOS 上:
sudo yum install stress-ng
一旦安装完毕,stress-ng 可以测试各种各样的部件,包括处理器、内存、输入/输出、 网络、虚拟内存及更多部件。它还很容易配置――针对每项测试,你可以指定不同的参数,比如多少测试实例、多少个处理器核心、测试强度多大、运行多久等。
介绍所有不同的命令和参数不在本文的范围之内,但是 Ubuntu 维基上的这个页面是个不错的起始点。
3、PassMark BurnInTest
PassMark 拥有各种各样的 PC 测试和监控软件,包括大名鼎鼎的 MemTest86 和 PerformanceTest 应用程序,它们只面向Windows 用户。另一方面,BurnInTest 应用程序却有 Linux 版本,它无疑值得尝试一番。
简而言之,它能同时测试计算机的所有主要子系统。但它不是测试纯粹的性能,而是更加专注于稳定性和可靠性。为了获得最佳结果,我们推荐将它与其他一些形式的性能测试手段结合起来。
它提供免费 30 天试用的服务;一旦试用期结束,就要收费(79 美元)。
二、处理器基准测试
比较两个不同的处理器很困难。还记得你知道奔腾 III 几乎总是胜过奔腾 II 的日子吗?有时候,i5 的性能胜过 i7,四核并非总是胜过双核。
正由于如此,处理器可以从基准测试比较得到最大的好处――超过其他任何一个 PC 硬件。如果你决定不使用上述一体化测试,那么可以从下面两款工具中的一款入手。
1、Geekbench
Geekbench 是目前市面上最出色的处理器基准测试之一。它随带 10 项整数工作负载测试和 8 项浮点工作负载测试――其中一些测试在 Hardinfo(下有介绍)中也有,但是其中一些是 Geekbench 特有的。
Windows 版本和 Mac 版本随带用户界面,但 Linux 版本只有命令行可执行文件。基准测试结果上传到网上,让你可以以一种比终端更直观的方式查看分数。
上传后,Geekbench 会在功能有限的“尝试模式”(实际上是无限制的免费试用)下运行,只有 64 位和 OpenCL 基准测试。想要 CUDA 基准测试、独立模式及其他功能,你需要购买 Geekbench 或 Geekbench 专业版。
2、Hardinfo
可以使用原生软件包管理器从大多数发行版获取 Hardinfo,不过我觉得在 Deiban 和 Ubuntu 上运行这个命令来得更容易:
sudo apt-get install hardinfo
或者在 Fedora、Red Hat 和 CentOS 上运行这个命令:
sudo yum install hardinfo
Hardinfo 随带 6 项不同的基准测试,每一种测试提供了一个分数,你可以用分数来准确地与其他系统比较。处理器测试执行整数运算,FPU 测试执行浮点运算。比较结果时,确保比较的是同样的测试。
Hardinfo 还是一种迅速获取系统信息的有用方式。只要浏览侧边栏中的各个页面,即可查看计算机配置的详细信息。
三、GPU 基准测试
想以一种非科学的方式测试系统的图形功能,只要看看你的 PC 能不能处理图形密集型游戏。想获得更准确的结果,只要运行下列这些测试。
1、Unigine
Unigine 有两项基准测试值得一提:Valley 基准测试和 Heaven 基准测试。每一项测试渲染不同的场景(分别是覆以森林的山谷和一系列浮空岛),迫使你的 GPU“超时工作”。
这是大多数 Linux 游戏玩家首选的图形基准测试。
免费基准测试是交互式,完全足以大致了解你的 GPU 有多好,但是如果是商业用途、进行深入的逐帧分析,专业版必不可少。售价 495 美元。
2、GFXBench
GFXBench 之前名为 GLBenchmark,它是面向 Linux 系统的两种主要的图形基准测试中名气较小的。它随带两组测试:高级测试(总体性能)和低级测试(特定功能的性能)。
四、数据硬盘基准测试
说到存储数据的硬盘,速度并非总是最重要。比如说,当硬盘用来存储备份内容,主要的问题是寿命、可靠性和容量。不过若是日常操作,你需要性能出色的高速固态硬盘。
1、Hdparm
Hdparm 是一种命令行实用工具,安装在大多数现代的发行版上,非常易于使用。它不仅可用来测试驱动器的性能,还可以针对每个驱动器来改变设置(比如开启或关闭 DMA)。不过要小心:如果使用不当,Hdparm 会导致驱动器崩溃或损坏!
首先,使用 df 命令列出系统上的所有驱动器。找到想要测试的那个驱动器――如果你没有把握,可以使用上下文,比如总的磁盘空间或挂载位置,然后与下列命令结合使用。以本文为例,我的驱动器是 /dev/sda2。
为了测试缓冲读取性能:
sudo hdparm -t /dev/sda2
/dev/sda2:
Timing buffered disk reads: 180 MB in 3.00 seconds = 59.96 MB/sec`
为了测试缓存读取性能:
sudo hdparm -T /dev/sda2
/dev/sda2:
Timing cached reads: 3364 MB in 2.00 seconds = 1682.75 MB/sec`
无论你使用哪一个,都要多次运行命令,以获得多个读数,然后求平均值,以便更准确地了解性能。确保你没有做可能影响读数的其他任何操作,比如传输文件。
2、Bonnie++
Bonnie++ 是一种自由的实用工具,旨在基准测试文件系统和硬驱性能。它并不直接安装在大多数发行版上,但是应该出现在核心代码库中。可使用下列命令安装到 Debian 和 Ubuntu上:
sudo apt-get install bonnie++
或者使用这个命令安装到Fedora、Red Hat或CentOS上:
sudo yum install bonnie++
一旦安装完毕,运行Bonnie++的最简单方法就是使用下列命令:
bonnie++ -d /tmp -r 2048 -u [username]
这会在 /tmp 目录下运行测试(因而测试 /tmp 所在的驱动器的性能),使用的参数表明系统有 2048MB 内存,测试将以[用户名]的用户权限来运行,本文中该用户是 jleeso。
不确信你的系统上有多少内存?请使用 free –m 命令,在合计栏下查找 Mem。
最后,你会看到逗号分隔的一行,上面是密密麻麻的不同数字。这些就是你的结果。比例:
1.96,1.96,ubuntu,1,1378913658,4G,,786,99,17094,3,15431,3,4662,91,37881,4,548.4,17,16,,,,,142,0,+++++,+++,+++++,+++,+++++,+++,+++++,+++,+++++,+++,16569us,15704ms,2485ms,51815us,491ms,261ms,291us,400us,710us,382us,42us,787us
拷贝它,输入下面这个命令:
echo "[粘贴你的结果]" | bon_csv2html > /tmp/t
❹ Linux系统下常用性能分析工具top命令,怎么详解
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。下面详细介绍它的使用方法。
top - 01:06:48 up 1:22, 1 user, load average: 0.06, 0.60, 0.48
Tasks: 29 total, 1 running, 28 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.3% us, 1.0% sy, 0.0% ni, 98.7% id, 0.0% wa, 0.0% hi, 0.0% si
Mem: 191272k total, 173656k used, 17616k free, 22052k buffers
Swap: 192772k total, 0k used, 192772k free, 123988k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1379 root 16 0 7976 2456 1980 S 0.7 1.3 0:11.03 sshd
14704 root 16 0 2128 980 796 R 0.7 0.5 0:02.72 top
1 root 16 0 1992 632 544 S 0.0 0.3 0:00.90 init
2 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0
统计信息区前五行是系统整体的统计信息。第一行是任务队列信息,同 uptime 命令的执行结果。其内容如下:
01:06:48 当前时间
up 1:22 系统运行时间,格式为时:分
1 user 当前登录用户数
load average: 0.06, 0.60, 0.48 系统负载,即任务队列的平均长度。
三个数值分别为 1分钟、5分钟、15分钟前到现在的平均值。
第二、三行为进程和CPU的信息。当有多个CPU时,这些内容可能会超过两行。内容如下:
Tasks: 29 total 进程总数
1 running 正在运行的进程数
28 sleeping 睡眠的进程数
0 stopped 停止的进程数
0 zombie 僵尸进程数
Cpu(s): 0.3% us 用户空间占用CPU百分比
1.0% sy 内核空间占用CPU百分比
0.0% ni 用户进程空间内改变过优先级的进程占用CPU百分比
98.7% id 空闲CPU百分比
0.0% wa 等待输入输出的CPU时间百分比
0.0% hi
0.0% si
最后两行为内存信息。内容如下:
Mem: 191272k total 物理内存总量
173656k used 使用的物理内存总量
17616k free 空闲内存总量
22052k buffers 用作内核缓存的内存量
Swap: 192772k total 交换区总量
0k used 使用的交换区总量
192772k free 空闲交换区总量
123988k cached 缓冲的交换区总量。
内存中的内容被换出到交换区,而后又被换入到内存,但使用过的交换区尚未被覆盖,
该数值即为这些内容已存在于内存中的交换区的大小。
相应的内存再次被换出时可不必再对交换区写入。
进程信息区统计信息区域的下方显示了各个进程的详细信息。首先来认识一下各列的含义。
序号 列名 含义
a PID 进程id
b PPID 父进程id
c RUSER Real user name
d UID 进程所有者的用户id
e USER 进程所有者的用户名
f GROUP 进程所有者的组名
g TTY 启动进程的终端名。不是从终端启动的进程则显示为 ?
h PR 优先级
i NI nice值。负值表示高优先级,正值表示低优先级
j P 最后使用的CPU,仅在多CPU环境下有意义
k %CPU 上次更新到现在的CPU时间占用百分比
l TIME 进程使用的CPU时间总计,单位秒
m TIME+ 进程使用的CPU时间总计,单位1/100秒
n %MEM 进程使用的物理内存百分比
o VIRT 进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES
p SWAP 进程使用的虚拟内存中,被换出的大小,单位kb。
q RES 进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA
r CODE 可执行代码占用的物理内存大小,单位kb
s DATA 可执行代码以外的部分(数据段+栈)占用的物理内存大小,单位kb
t SHR 共享内存大小,单位kb
u nFLT 页面错误次数
v nDRT 最后一次写入到现在,被修改过的页面数。
w S 进程状态。
D=不可中断的睡眠状态
R=运行
S=睡眠
T=跟踪/停止
Z=僵尸进程
x COMMAND 命令名/命令行
y WCHAN 若该进程在睡眠,则显示睡眠中的系统函数名
z Flags 任务标志,参考 sched.h
默认情况下仅显示比较重要的 PID、USER、PR、NI、VIRT、RES、SHR、S、%CPU、%MEM、TIME+、COMMAND 列。可以通过下面的快捷键来更改显示内容。
更改显示内容通过 f 键可以选择显示的内容。按 f 键之后会显示列的列表,按 a-z 即可显示或隐藏对应的列,最后按回车键确定。
按 o 键可以改变列的显示顺序。按小写的 a-z 可以将相应的列向右移动,而大写的 A-Z 可以将相应的列向左移动。最后按回车键确定。
按大写的 F 或 O 键,然后按 a-z 可以将进程按照相应的列进行排序。而大写的 R 键可以将当前的排序倒转。
命令使用
1. 工具(命令)名称
top
2.工具(命令)作用
显示系统当前的进程和其他状况; top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止. 比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中CPU最“敏感”的任务列表.该命令可以按CPU使用.内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以通过交互式命令或者在个人定制文件中进行设定.
3.环境设置
在Linux下使用。
4.使用方法
4.1使用格式
top [-] [d]
[q] [c] [C] [S] [s] [n]
4.2参数说明
d 指定每两次屏幕信息刷新之间的时间间隔。当然用户可以使用s交互命令来改变之。
p 通过指定监控进程ID来仅仅监控某个进程的状态。
q该选项将使top没有任何延迟的进行刷新。如果调用程序有超级用户权限,那么top将以尽可能高的优先级运行。
S 指定累计模式
s 使top命令在安全模式中运行。这将去除交互命令所带来的潜在危险。
i 使top不显示任何闲置或者僵死进程。
c 显示整个命令行而不只是显示命令名
4.3其他
下面介绍在top命令执行过程中可以使用的一些交互命令。从使用角度来看,熟练的掌握这些命令比掌握选项还重要一些。这些命令都是单字母的,如果在命令行选项中使用了s选项,则可能其中一些命令会被屏蔽掉。
Ctrl+L 擦除并且重写屏幕。
h或者? 显示帮助画面,给出一些简短的命令总结说明。
k 终止一个进程。系统将提示用户输入需要终止的进程PID,以及需要发送给该进程什么样的信号。一般的终止进程可以使用15信号;如果不能正常结束那就使用信号9强制结束该进程。默认值是信号15。在安全模式中此命令被屏蔽。
i 忽略闲置和僵死进程。这是一个开关式命令。
q 退出程序。
r 重新安排一个进程的优先级别。系统提示用户输入需要改变的进程PID以及需要设置的进程优先级值。输入一个正值将使优先级降低,反之则可以使该进程拥有更高的优先权。默认值是10。
S 切换到累计模式。
s 改变两次刷新之间的延迟时间。系统将提示用户输入新的时间,单位为s。如果有小数,就换算成m s。输入0值则系统将不断刷新,默认值是5 s。需要注意的是如果设置太小的时间,很可能会引起不断刷新,从而根本来不及看清显示的情况,而且系统负载也会大大增加。
f或者F 从当前显示中添加或者删除项目。
o或者O 改变显示项目的顺序。
l 切换显示平均负载和启动时间信息。
m 切换显示内存信息。
t 切换显示进程和CPU状态信息。
c 切换显示命令名称和完整命令行。
M 根据驻留内存大小进行排序。
P 根据CPU使用百分比大小进行排序。
T 根据时间/累计时间进行排序。
W 将当前设置写入~/.toprc文件中。这是写top配置文件的推荐方法
❺ linux性能工具top怎么查看所有的进程情况默认的只显示一屏,怎么翻到一下页来查看其他进程
top只是显示最前面的几个,并不能显示全部进程
要显示全部进程用ps -A
❻ 如何使用Nmon监控Linux系统性能
用Nmon监控Linux系统性能的方法请参见下面介绍(配图):
1、安装Nmon
2、一旦安装完成,则可以通过在终端执行nmon命令启动它。
Nmon命令执行之后,大家可以看到如下输出:

以上是基础使用方法。下面再补充一些命令和方法:
1、启动
打开nmon所在的目录:cd/usr/local/nmon
修改启动文件的访问权限:chmod755nmon_x86_rhel52
启动nmon:./nmon_x86_rhel52
如果要采样nmon的数据保存成文件,可以
./nmon_x86_rhel52-fT-s30-c120
其中30表示每隔30秒nmon取一次系统性能数据,120表示取120次;
这样nmon将会在运行开始算起连续取得30sX120=60分钟,可根据实际需要时间调整;当运行以上命令后该目录下会生成一个.nmon文件,该文件会根据间隔时间被写入性能数据,当一段时间后再查看该文件,文件字节变大
利用nmonanalyser分析.nmon文件
当测试结束的同时ftp到服务器上将.nmon文件get下来,
打开nmon_analyser.zip包下的nmonanalyserv338.xls文件,点击Analysenomndata按钮,选择之前get来下的.nmon文件。
(如果报告以下宏的安全级别太高错误,则在“工具--宏--安全性”里把级别调低,然后重新打开nmonanalyserv338.xls文件)
待分析结束后会生成性能分析结果文件(文件格式为.xls,其中包括CPU,IO,内存等性能分析报告)。
分析结果中有很多数据和图形,简要介绍主要的性能参数图像
4.1系统汇总(对应excel标签的‘SYS_SUMM’)
蓝线为cpu占有率变化情况;
粉线为磁盘IO的变化情况;
4.2磁盘读写情况汇总(对应excel标签的‘DISK_SUMM’)
蓝色为磁盘读的速率KB/sec
紫色为磁盘写的速率KB/sec
4.3内存情况汇总(对应excel标签的‘MEM’)
曲线表示内存剩余量(MB)
分析数据得到的报告文件(.xls)中包含很多性能分析结果数据,根据自己的需要查看。
2、nmon运行本身就消耗系统资源的;
另外如果取到.nmon文件后确定不再需要nmon继续收集信息则应kill掉nmon;
命令:
ps-A|grepnmon#得到pid
kill-9pid
suse10enterprisesp2:
nmon_x86_rhel3
使用对应的操作系统文件:
chmod+xnmon_x86_ubuntu810
mvnmon_x86_ubuntu810/usr/local/bin/nmon
对于Debian还要做以下操作(不做也同样能运行):
apt-getinstalllsb-release
lsb_release-d|sed's/Description: //'>/etc/debian_release
然后直接运行nmon即可。
采集数据并生成报表:
采集数据:
nmon-s10-c60-f-m/home/
参数解释:
-s10每10秒采集一次数据。
-c60采集60次,即为采集十分钟的数据。
-f生成的数据文件名中包含文件创建的时间。
-m生成的数据文件的存放目录。
这样就会生成一个nmon文件,并每十秒更新一次,直到十分钟后。
生成的文件名如:hostname_090824_1306.nmon,"hostname"是这台主机的主机名。
生成报表:
下载nmonanalyser(生成性能报告的免费工具):
http://www.ibm.com/developerworks/wikis/display/Wikiptype/nmonanalyser
把之前生成的nmon数据文件传到Windows机器上,用Excel打开分析工具nmonanalyserv33C.xls。点击Excel文件中的"Analyzenmondata"按钮,选择nmon数据文件,这样就会生成一个分析后的结果文件:hostname_090824_1306.nmon.xls,用Excel打开生成的文件就可以看到结果了。
如果宏不能运行,需要做以下操作:
工具->宏->安全性->中,然后再打开文件并允许运行宏。
自动按天采集数据:
在crontab中增加一条记录:
00***rootnmon-s300-c288-f-m/home/>/dev/null2>&1
300*288=86400秒,正好是一天的数据。
采样文件越来越大:
[email protected].***:~/nmon#./nmon-s1-c33-f
[email protected].***:~/nmon#
[email protected].***:~/nmon#-sh*
8.0KAD39_***_sles10_101207_1046.nmon
160Knmon
[email protected].***:~/nmon#-sh*
12KAD39_***_sles10_101207_1046.nmon
160Knmon
[email protected].***:~/nmon#-sh*
16KAD39_***_sles10_101207_1046.nmon
160Knmon
[email protected].***:~/nmon#-sh*
20KAD39_***_sles10_101207_1046.nmon
160Knmon
[email protected].***:~/nmon#-sh*
20KAD39_***_sles10_101207_1046.nmon
160Knmon
注:以上一些机器名称或系统名称,请根据实际情况自行调整及修改。
❼ linux 性能优化-- cpu 切换以及cpu过高
本文先介绍了cpu上下文切换的基础知识,以及上下文切换的类型(进程,线程等切换)。然后介绍了如何查看cpu切换次数的工具和指标的解释。同时对日常分析种cpu过高的情况下如何分析和定位的方法做了一定的介绍,使用一个简单的案例进行分析,先用top,pidstat等工具找出占用过高的进程id,然后通过分析到底是用户态cpu过高,还是内核态cpu过高,并用perf 定位到具体的调用函数。(来自极客时间课程学习笔记)
1、多任务竞争CPU,cpu变换任务的时候进行CPU上下文切换(context switch)。CPU执行任务有4种方式:进程、线程、或者硬件通过触发信号导致中断的调用。
2、当切换任务的时候,需要记录任务当前的状态和获取下一任务的信息和地址(指针),这就是上下文的内容。因此,上下文是指某一时间点CPU寄存器(CPU register)和程序计数器(PC)的内容, 广义上还包括内存中进程的虚拟地址映射信息.
3、上下文切换的过程:
4、根据任务的执行形式,相应的下上文切换,有进程上下文切换、线程上下文切换、以及中断上下文切换三类。
5、进程和线程的区别:
进程是资源分配和执行的基本单位;线程是任务调度和运行的基本单位。线程没有资源,进程给指针提供虚拟内存、栈、变量等共享资源,而线程可以共享进程的资源。
6、进程上下文切换:是指从一个进程切换到另一个进程。
(1)进程运行态为内核运行态和进程运行态。内核空间态资源包括内核的堆栈、寄存器等;用户空间态资源包括虚拟内存、栈、变量、正文、数据等
(2)系统调用(软中断)在内核态完成的,需要进行2次CPU上下文切换(用户空间-->内核空间-->用户空间),不涉及用户态资源,也不会切换进程。
(3)进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了用户空间的资源,也包括内核空间资源。
(4)进程的上下文切换过程:
(5)、下列将会触发进程上下文切换的场景:
7、线程上下文切换:
8、中断上下文切换
快速响应硬件的事件,中断处理会打断进程的正常调度和执行。同一CPU内,硬件中断优先级高于进程。切换过程类似于系统调用的时候,不涉及到用户运行态资源。但大量的中断上下文切换同样可能引发性能问题。
重点关注信息:
系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。
这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。
linux的中断使用情况可以从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。
重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。
这个数值其实取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。这时,需要根据上下文切换的类型,再做具体分析。
比方说:
首先通过uptime查看系统负载,然后使用mpstat结合pidstat来初步判断到底是cpu计算量大还是进程争抢过大或者是io过多,接着使用vmstat分析切换次数,以及切换类型,来进一步判断到底是io过多导致问题还是进程争抢激烈导致问题。
CPU 使用率相关的重要指标:
性能分析工具给出的都是间隔一段时间的平均 CPU 使用率,所以要注意间隔时间的设置,特别是用多个工具对比分析时,你一定要保证它们用的是相同的间隔时间。比如,对比一下 top 和 ps 这两个工具报告的 CPU 使用率,默认的结果很可能不一样,因为 top 默认使用 3 秒时间间隔,而 ps 使用的却是进程的整个生命周期。
top 和 ps 是最常用的性能分析工具:
这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。
预先安装 stress 和 sysstat 包,如 apt install stress sysstat。
stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。
下面的 pidstat 命令,就间隔 1 秒展示了进程的 5 组 CPU 使用率,
包括:
perf 是 Linux 2.6.31 以后内置的性能分析工具。它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。
第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:
输出结果中,第一行包含三个数据,分别是采样数(Samples)如2K、事件类型(event)如cpu-clock:pppH和事件总数量(Event count)如:371909314。
第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。
1.启动docker 运行进程:
2.ab工具测试服务器性能
ab(apache bench)是一个常用的 HTTP 服务性能测试工具,这里用来模拟 Ngnix 的客户端。
3.分析过程
CPU 使用率是最直观和最常用的系统性能指标,在排查性能问题时,通常会关注的第一个指标。所以更要熟悉它的含义,尤其要弄清楚:
这几种不同 CPU 的使用率。比如说:
碰到 CPU 使用率升高的问题,你可以借助 top、pidstat 等工具,确认引发 CPU 性能问题的来源;再使用 perf 等工具,排查出引起性能问题的具体函数.
❽ Linux里面top和free -h命令区别是什么
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,常用于服务端性能分析。
free 命令能够显示系统中物理上的空闲和已用内存,还有交换内存,同时,也能显示被内核使用的缓冲和缓存。这些信息是通过解析文件 /proc/meminfo 而收集到的。具体可以看《Linux就该这么学》
top有点类似windows里面的任务管理器,所有信息都有。Free就只有内存的信息
