当前位置:首页 » 操作系统 » 贪婪算法简单

贪婪算法简单

发布时间: 2025-06-25 23:42:04

❶ 贪心算法的例题分析

例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。

❷ 请问数钱的贪婪算法怎样确保得到最优解

贪婪算法:总是作出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。
(注:贪婪算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题它能产生整体最优解。但其解必然是最优解的很好近似解。

基本思路:——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止

实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;

基本要素:
1、 贪婪选择性质:所求问题的整体最优解可以通过一系列局部最优的选择,即贪婪选择来达到。(与动态规划的主要区别)
采用自顶向下,以迭代的方式作出相继的贪婪选择,每作一次贪婪选择就将所求问题简化为一个规模更小的子问题。
对于一个具体问题,要确定它是否具有贪婪选择的性质,我们必须证明每一步所作的贪婪选择最终导致问题的最优解。通常可以首先证明问题的一个整体最优解,是从贪婪选择开始的,而且作了贪婪选择后,原问题简化为一个规模更小的类似子问题。然后,用数学归纳法证明,通过每一步作贪婪选择,最终可得到问题的一个整体最优解。
2、最优子结构性质:包含子问题的最优解
1、 设有n个活动的安排,其中每个活动都要求使用同一资源,如演讲会场,而在同一时间只允许一个活动使用这一资源。每个活动都有使用的起始时间和结束时间。问:如何安排可以使这间会场的使用率最高。
活动 起始时间 结束时间
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
11 12 14

算法:一开始选择活动1,然后依次检查活动一i是否与当前已选择的所有活动相容,若相容则活动加入到已选择的活动集合中,否则不选择活动i,而继续检查下一活动的相容性。即:活动i的开始时间不早于最近加入的活动j的结束时间。
Prodere plan;
Begin
n:=length[e];
a {1};
j:=1;
for i:=2 to n do
if s[i]>=f[j] then
begin a a∪{i};
j:=i;
end
end;

例1 [找零钱] 一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。

假设需要找给小孩6 7美分,首先入选的是两枚2 5美分的硬币,第三枚入选的不能是2 5美分的硬币,否则硬币的选择将不可行(零钱总数超过6 7美分),第三枚应选择1 0美分的硬币,然后是5美分的,最后加入两个1美分的硬币。

贪婪算法有种直觉的倾向,在找零钱时,直觉告诉我们应使找出的硬币数目最少(至少是接近最少的数目)。可以证明采用上述贪婪算法找零钱时所用的硬币数目的确最少(见练习1)。

❸ greedy method的意思

greedy method即贪婪算法

  • 定义:贪婪算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法。
  • 特点:贪婪算法并不从整体最优考虑,它所做的只是在某种意义上的局部最优解。贪婪算法通过一系列局部最优的选择,期望达到全局最优的解。
  • 应用场景:贪婪算法在图论、数据压缩、机器学习等领域有广泛应用,如最短路径问题、最小生成树问题、背包问题等。
  • 优缺点:贪婪算法的优点是简单高效,适用于一些特定问题;缺点是并不能保证得到全局最优解,因为每一步的选择只依赖于当前状态,而不考虑未来的影响。

❹ 贪心算法的介绍

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

热点内容
个人租个服务器能怎么玩 发布:2025-06-26 04:52:30 浏览:999
ubuntu18设置ftp 发布:2025-06-26 04:48:08 浏览:464
公开版安卓机是什么意思 发布:2025-06-26 04:48:06 浏览:922
编译生成64位dll 发布:2025-06-26 04:41:48 浏览:563
安卓酷狗下载的安装包在哪里 发布:2025-06-26 04:36:02 浏览:624
M6挑牙编程 发布:2025-06-26 04:21:17 浏览:474
文件夹所有文件名 发布:2025-06-26 04:21:14 浏览:671
江西调度服务器挂式云主机 发布:2025-06-26 03:57:48 浏览:636
sm是哪个存储器 发布:2025-06-26 03:51:00 浏览:434
oppo如何给游戏存储权限 发布:2025-06-26 03:22:17 浏览:146