当前位置:首页 » 操作系统 » 遗传算法后期

遗传算法后期

发布时间: 2025-08-09 10:36:22

A. 在遗传算法中如果个体有100个,交叉概率为0.1,则交叉个体数为10。但现在采用自适应的交叉概率,

100个个体,交叉概率为0.1,并不代表交叉个体数为10个。这是一个概率问题。
另外,交叉概率一般会取0.5-1这个范围内,0.1未免有点小。
自适应的遗传算法,一般在迭代初期会有较大的交叉概率,越往迭代后期,交叉概率越小。
而变异概率则相反。

B. 用改进遗传算法求取水文地质参数

任广军1 张勇2

(1.山东省鲁南地质工程勘察院,兖州272000;2.山东省地矿工程集团有限公司,济南250013)

作者简介:任广军(1972—),男,工程师,主要从事水文地质、环境地质等。

摘要:本文利用非稳定流抽水试验资料,采用改进的十进制遗传算法在计算机上自动优选含水层水文地质参数。该方法同传统上使用的配线法相比较,具有节省时间,减少人工配线误差,所求参数逼真,且能对一些线性、非线性问题求解,具有很高的推广和应用价值。

关键词:遗传算法;随机模拟;含水层;水文地质参数;优选

0 引言

利用改进的十进制遗传算法,根据抽水试验资料来认识水文地质条件、反求水文地质参数是水文地质计算中的基本问题。具体地讲,在探明含水层范围、类型的基础上,建立描述该含水层水流运动模型,利用抽水试验过程中的地下水位变化过程资料来确定水文地质参数。

虽然非稳定抽水试验公式适用条件非常苛刻,但能反映出含水层非稳定流的一些基本特点,还可运用叠加原理解决某些比较复杂的非稳定流问题。此外,作为检验数值方法精确性的重要依据,具有广泛应用和发展前景。

目前,由于非稳定流抽水试验确定水文地质参数的具体实现方法主要有人工配线法或以计算辅助的配线法,但这种方法的效果好坏完全取决于肉眼观察,带有很大的主观性。本文作者选取了一些典型实例,采用遗传算法建立了一种计算机全自动求参的全局优选法,通过与人工配线分析比较,确定本方法计算机求参的高精度与高可靠性。

求取参数是通过实测结果与模型计算结果的最佳拟合(仿真)程度来实现的,参数的精确程度在很大程度上取决于实测资料的精度。

1 遗传算法介绍

生物的进化是一个奇妙的优化过程,它通过选择淘汰,突然变异,基因遗传等规律产生适应环境变化的优良物种。遗传算法是根据生物进化思想而启发得出的一种全局优化算法。

遗传算法的概念最早是由Bagley J.D在1967年提出的;而开始遗传算法的理论和方法的系统性研究的是1975年,这一开创性工作是由Michigan大学的J.H.Holland所实行。当时,其主要目的是说明自然和人工系统的自适应过程。

遗传算法简称GA(Genetic Algorithm),在本质上是一种不依赖具体问题的直接搜索方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动机、混沌理论与人工智能一样,都是对今后十年的计算技术有重大影响的关键技术”。

2 目标函数的确定

通过综合考虑计算程序的运算时间、速度以及含水层的类型,确立利用抽水实测资料和计算资料的拟合程度为目标函数。其计算公式为:

山东省环境地质文集

式中:s实测为实测抽水试验观测孔的降深;s计算为计算抽水试验观测孔的降深;NT为计算时段。

3 计算实例及结果分析

3.1 承压含水层地下水降深公式

承压含水层地下水降深公式为:

山东省环境地质文集

式中:S为以固定流量Q抽水时与抽水井距离为r处任一时间的水位降深(m);T为导水系数;Q为涌水量;W(u)为井函数,是一个指数积分函数:

山东省环境地质文集

式中:u为井函数的自变量,

其中s为承压含水层的储存系数;T为含水层的导水系数;t为时间。

例1:某地区进行非稳定流抽水试验。区域地层剖面是:地表下18~25 m是由含砾粗砂层组成的含水层,其底板由粘土质沉积物组成,18 m以上是粘土、泥炭层。抽水井的过滤器安装在含水层的整个厚度上。观测孔距抽水井30m,观测资料如表1所示。主井作定流量抽水,Q=788m3/d,抽水接近14小时。试根据观测资料求取水文地质参数。

(1)lgS-lgt配线法所求参数:T配线=439m2/d,s配线=1.694×10-4

(2)S-lgt直线图解法所求参数:T配线=450.7m2/d,s配线=1.392×10-4

(3)计算机所求参数:T=383.0088m2/d,s= 1.78×10-4

为更直观地说明上述所求参数的可靠性,由上述参数所求计算降深与实测降深进行比较(图1)。通过比较,进一步确定了计算机求参的高精度与稳定性。承压含水层配线参数与优选参数比较分析:T配线=439m2/d,s配线=0.0001694;T计算=383.0088m2/d,s计算=0.0001780。

表1 遗传算法计算水位降深与实测水位降深结果表

图1 计算降深与实测降深比较图

3.2 在有越流补给的承压含水层地下水降深公式

在有越流补给的承压含水层地下水降深公式为:

山东省环境地质文集

式中:u同(3)式;

为越流井函数,本文中

采用数值积分:

山东省环境地质文集

例2:有一无限分布的承压含水层,厚度20m,其底部为绝对隔水的粘土层;上部为弱透水的亚砂土层,厚2m;弱透水层之上为潜水含水层。在承压含水层中有一完整抽水井,抽水时的稳定流量Q=5530m3/d。距抽水井r=17.34m处有一观测孔据观测知,在抽水过程中上部潜水的水位不变。抽水层的水位降深值载于表2,试计算含水层水文地质参数。

(1)lgS-lgt配线法所求参数:T配线=853.50m2/d,s配线=4.20×10-4;B配线=568.50m;

(2)lgS-lgt配线法所求参数:T计算=817.19m2/d,s计算=4.31×10-4;B计算=482.80m。

为更直观地说明上述所求参数的可靠性,由上述参数所求计算降深与实测降深进行比较(图2)。通过比较,进一步确定了计算机求参的高精度与稳定性。有越流时承压含水层优选参数误差分析:T配线=853.50m2/d,s配线=0.00042,B配线=568.50m;T计算=817.1950m2/d,s计算=0.00043103,B计算=482.798m。

表2 遗传算法计算水位降深与实测水位降深结果表

续表

图2 计算降深与实测降深比较图

3.3 考虑有滞后补给的潜水含水层地下水降深公式

根据博尔顿理论,潜水含水层地下水降深公式计算公式可分为抽水前期、抽水中期和抽水后期。参数优选主要根据抽水前期和抽水后期的资料拟合而得:

山东省环境地质文集

其中D为疏干因子。

抽水前期计算公式:

抽水后期计算公式:同(2)式。

4 结论及不足之处

4.1 结论

通过上述实例计算结果表明:计算结果同人工加以计算机辅助配线法相比较,其计算水文地质参数精度较高,且其参数初值依赖程度较低,对于复杂的线性、非线性及多态性、多峰值问题在全局优化方面有着其他方法所无法比拟的优势,具有很高的推广和应用价值。

4.2 不足之处

遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还存在着各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最优解位置;最后,遗传算法的参数选择尚未有定量方法。对于遗传算法,一是还需要进一步研究其数学基础理论;二是还需要在理论上证明它与其他优化技术的优劣及原因;三是还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。此外,对于地下水渗流问题的数值解反求多类各种水文地质参数虽有成功实例,对于运算速度问题,还存在着相当大的难度。

参考文献

陈崇希,唐仲华.1990.地下水流动问题数值方法.武汉:中国地质大学出版社

陈喜.1998.含水层水文地质参数自动优选方法.工程勘察,(2)

郭东屏.1994.地下水动力学.西安:陕西科学技术出版社

GB 50027—2001 供水水文地质勘察规范

李俊亭,王愈吉.1987.地下水动力学.北京:地质出版社

刘宝碇,赵瑞清,王纲.2003.不确定规划及应用.北京:清华大学出版社

朱国祥,王峰.1999.利用配线法水文地质参数计算机程序简介.工程勘察,(3)

邹正盛,赵智荣.2001.浅析抽水水文地质参数确定中的问题.水文地质工程地质,(3)

C. 游戏人工智能的遗传算法

上述的几种算法虽然可以模拟出比较好的智能表象,但遗憾的是没有学习功能。而学习功能相对于智能生物是一个非常重要的功能。因此,我们简单介绍一下遗传算法,并举一个具体的例子。
生物的进化是一个奇妙的优化过程,它通过选择淘汰,突然变异,基因遗传等规律产生适应环境变化的优良物种。遗传算法是根据生物进化思想而启发得出的一种全局优化算法。
遗传算法简介:对问题产生一个描述,对待解决问题进行编码。随机初始化群体X(0)=(x1, x2, … xn)。对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好坏。应用选择算子产生优良种群goodX(t)。对goodX(t)应用遗传算子,产生新一代群体X(t+1)。t:=t+1;如果不满足终止条件继续(3)。选择算子:选择算子从群体中按某一概率成对选择个体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌模型。
例3:同样看黑白棋,我们采用自学习的方法来模拟智能的实现。棋盘状态采用 敌方=-1、空=0、我方=1。棋盘大小为64,我们对每一个格子用5*5的局部棋子来评价其战略重要性。采用线性方式Important[node]=∑Wi*state[ i]。这样我们就得到一个W[64][25]的表,对于每一种棋盘局势它总能判断出战略重要性最大的点(姑且不论对与否)。这种编码方式考虑了棋盘全局位置特性与局部局势特性,大家可自行改进。
选取种群大小为30,随机生成30个Wi[64][25]。
初始训练阶段:对每一个Wi[64][25],让其判断一些特定的战略点,判断力好的适应度大。后期训练阶段:和人对下,赢的多的适应度大。选择适应度大的10个为产生优良种群goodX(t)。对goodX(t)应用遗传算子,产生新一代群体X(t+1)(30个个体)。交叉遗传,可选取father[0-32][25]和mother的[32-64][25]产生新的个体。变异遗传,对father[64]25]中的数值产生一些随机变化从而生成新个体。t=t+1;如果不满足终止条件继续(3)。
采用这种方式,我们可以使程序自己学习,从而模拟智能。遗传算法的主体就是对问题编码,然后通过进化方式进化出优秀(相对于适应度)的种群,编码方式由具体问题决定,进化方式影响进化范围和速度。通过这种方式的学习,模型一般都能得到此编码方式下的最优编码,从而具有超越人为编码的性能。有兴趣的读者可以自行深入研究。

D. 非线性解析反演与遗传算法的结合反演方法

周辉

(青岛海洋大学海洋地球科学学院,青岛266003)

何樵登

(长春地质学院地球物理系,长春130026)

摘要各向异性介质参数反演通常为非线性优化问题。非线性反演方法可以分为两大类:随机搜索方法,如Monte Carlo法、模拟退火和遗传算法及基于非线性最小平方理论的非线性解析反演方法。遗传算法能寻找到全局最优解,但它为一种较费时的方法。非线性解析反演方法能给出一个与初始模型有关的局部最优解。然而,这种方法具有较快的收敛速度。遗传算法与非线性解析反演方法相结合的反演方法利用这两种反演方法的优点而克服其缺点。因此,结合反演方法既能快速收敛,又能寻找到全局最优解。如何合理地将遗传算法和非线性解析反演方法结合是十分重要的。本文提出一种结合方案,即在连续若干次遗传算法迭代后作一次非线性解析反演。理论算例表明结合反演方法具有上述特点。

关键词遗传算法非线性解析反演非线性结合反演各向异性介质

1引言

遗传算法为随机搜索类方法之一,它以概率论为理论基础,用于求解多极值复杂优化问题[9]。遗传算法不要求已知模型空间中后验概率密度的形状并能广泛搜索模型空间。遗传算法模拟自然选择和遗传规律,并遵循适者生存的原则。

遗传算法由Holland在1975年提出[4]。Berg首先将遗传算法应用于地球物理优化问题[1]。Stoffa等系统地研究了种群大小、交叉概率、选择概率和变异概率对多参数优化问题收敛性和收敛速度的影响[11]。Sen等讨论了在选择概率中引入温度参数的作用并提出一些退火方案[10]。周辉等则研究了目标函数与收敛速度和解的精度的关系[16]

基于最小平方优化理论的非线性反演方法是两大类反演方法之一。当给定的初始模型位于目标函数全局最优解所在的峰谷附近时,这种下降类方法能给出正确解而与初始模型位置无关。下降类算法研究得较深入,应用较广。

Tarantola提出一种基于广义最小二乘法的多维多偏移距声波地震波形解释的一般性非线性地震波形反演方法[12]。随后,Tarantola将该理论推广于各向同性介质的弹性波反演[13]。Gauthier等用理论数据验证了Tarantola提出的方法的正确性[2]。稍后,Tarantola研究非线性解析法反射波弹性反演的策略,指出以纵横波的波阻抗和密度作为反演参数,才尽可能使反演参数之间相互独立[14]。Pan用τ—P变换研究层状声学介质中平面波地震记录非线性解析反演的理论和可行性[6]。为了更多地利用地震数据中的信息,包括VSP资料中反射和转换信息,Mora作了一些工作[5]。当仅用反射数据时反演主要解决引起反射的P波和S波的波阻抗突变。当利用转换数据时,则能分辨大尺度的P波和S波速度变化。Sambridge等改进了修改模型的方法[8]。在子空间中,可同时得到P波、S波波阻抗和密度。周辉等将非线性梯度反演方法推广于多维、多道、多分量任意弹性各向异性介质参数的反演[17]

非线性解析反演方法和遗传算法结合的反演方法利用非线性解析反演和遗传算法的优点,克服它们的缺点。因此,结合反演方法不仅能搜索到全局最优解,而且能较快地收敛。Porsani等在遗传算法和广义线性反演方法相结合方面作了一些研究[7]

本文讨论各向异性介质的非线性解析反演方法和遗传算法与非线性解析反演方法相结合的结合反演方法[17]。对于遗传算法读者可参考遗传算法的相关文献[3,9~11]

2各向异性介质参数非线性解析反演方法

2.1共轭梯度法

反演的目的是利用地面或井中测得的位移场ui(xr,t)求取地下介质密度分布ρ(x)和弹性参数分布Cijkl(x)。ρ(x)、Cijkl(x)称为模型参数。x为研究介质中或边界上任一点,x=(x1,x2,x3),xr为接收点。反演的目标是使目标函数

岩石圈构造和深部作用

取极小值。其中Cd、Cm分别为数据(波场)和模型参数的协方差算子。m0为先验模型参数,m为反演过程中求得的模型参数。由于模型参数有多个,故用向量表示。ucal为给定m的波动方程正演记录,uobs为观测波场,上角标t表示转置。地震记录u和模型参数m之间的函数关系为

岩石圈构造和深部作用

g为非线性算子,(2)式为波动方程的算子形式。记第n次迭代时的模型参数为mn,则有

岩石圈构造和深部作用

及共轭梯度法的迭代公式[15]

岩石圈构造和深部作用

其中Gn为g对mn的Frechet导数,ηn为一常数,可由多种方法计算[5,8]

梯度

为模型空间的对偶空间中的一个元素。模型空间和其对偶空间以模型参数的协方差算子Cm=Diag(Cp,Cc)由式(4d)相联系。在后面将给出

的表达式。

式(4)为梯度反演方法的基本公式。当该公式中的每一量都已知时,迭代就可进行。在这些变量中,最关键的是梯度向量。

2.2目标函数

在最小二乘理论中,权函数是协方差算子逆的核。假设数据集中的误差是不相关的,它仅取决于时间或源和接收器的位置,那么有[14]

岩石圈构造和深部作用

其中σ为数据的均方差。

2.3各向异性介质中的弹性波动方程

令fi(x,t;xs)是第s次激发的内体力密度,Ti(x,t;xs)是地球表面S的应力矢量分量,ni(x)是表面的单位法向分量。那么与第s次激发相应的位移由以下微分方程组给出[15]

岩石圈构造和深部作用

2.4梯度向量

式(4)中梯度向量的分量为[17]

岩石圈构造和深部作用

其中,T为地震记录的长度,

为反向传播场,满足

岩石圈构造和深部作用

其中,t∈[T,0],

满足终了时间条件。

3结合反演方法

3.1遗传算法和非线性解析反演方法的优缺点

遗传算法是利用概率论来求解多极值复杂优化问题的一种随机搜索方法,由一组随机选取的模型开始,不需要更多的先验信息,广泛而有效地对模型空间的最优部分采样。尽管遗传算法是基于自然选择、遗传规律,搜索模型空间的最优部分而求得最优解,但它是一种计算量很大的方法。由于地震模型空间大,用全局最优化方法估计各向异性介质参数的地震波形反演十分费时。

目标函数的梯度信息是非线性解析反演方法修改模型参数的依据,它能给出一个接近初始模型的一个局部最优解。如果初始模型选择得合适,即当初始模型处在全局最优解所在的目标函数低谷时,非线性解析反演方法能收敛于全局最优解。然而,恰好给出一个接近全局最优解的初始模型的概率是非常小的,尤其对没有模型参数的任何先验信息的情况。但应强调的是,非线性解析反演方法具有较快的收敛速度。

发挥非线性解析反演方法快速收敛和遗传算法能搜索到全局最优解的优点,而克服前者仅能寻找到局部最优解和后者运算量大的缺点是很有意义的。非线性解析反演方法和遗传算法相结合的反演方法可达到上述目的。在结合反演方法中,遗传算法的作用是提供接近全局最优解的模型,非线性解析反演的作用是尽快求出全局最优解。因此,结合反演方法具有搜索到全局最优解的能力和比遗传算法收敛速度快的特点。

3.2结合方案

遗传算法在优化过程中连续不断地搜索整个模型空间。在每次迭代结束后,得到一个本代的最优模型。根据遗传算法的数学原理[3],最优模型的数量在下一代中得以增加,同时经交叉和变异作用又有新的模型产生。在下一代种群中,最优模型可能与前一代的相同,也有可能劣于前一代的最优模型。所有这些最优模型可能在目标函数的同一低谷处,也有可能在其它低谷处。遗传算法寻找最优模型要经过多次迭代才能确定一个极值。遗传算法的随机性导致遗传算法是一种费时的方法。然而正是遗传算法的这种随机性保证了它能搜索到全局最优解。

如果将每次遗传算法迭代的最优解作为非线性解析反演的初始模型,非线性解析反演可以找出与初始模型毗邻的局部最优解。由于非线性解析反演是一种确定性的方法,它按目标函数的梯度方向修改模型,所以非线性解析反演方法只需几次迭代即可收敛。非线性解析反演求得的解是否为全局最优解,非线性解析反演方法本身是无法得以保证的。只有当遗传算法提供接近全局最优解的初始模型时,非线性解析方法反演才能收敛到全局最优解。

结合反演方法中遗传算法和非线性解析反演方法的匹配方式是十分重要的。非线性解析反演方法得到接近遗传算法提供的初始模型的局部最优解后,在以后若干代中因遗传算法的随机性而使其最优解与该局部最优解相同。如果每次遗传算法迭代后作非线性解析反演,那么结合反演的结果在几代内都是相同的。显然其中的一些非线性解析反演是没有必要的。因此,结合方式应为在连续多次遗传算法迭代后作一次非线性解析反演,然后将非线性解析反演的结果作为下一代种群中的一个母本模型。图1为结合反演的框图。

图1结合反演框图

4算例

为了验证结合反演方法的优越性,对一维多层横向各向同性介质参数的反演理论实例作了分析。

图2是目标函数值与迭代次数的关系图。在该结合反演算例中每次遗传算法迭代后就作一次非线性解析反演迭代。结合反演的误差在开始几次迭代中下降很快,尤其在前3次。结合反演方法在第10次迭代达到的较小误差,遗传算法在第42次迭代才达到。结合反演的误差比遗传算法的跳跃得严重。这是因为非线性解析反演得到的模型在遗传算法中作为母代参加繁衍。这个模型因遗传算法的随机性常常被新的模型替代。这两个模型可能位于目标函数两个不同的低谷中,因此非线性解析反演的结果不同。

尽管结合反演的目标函数有些振荡,但也存在连续几次迭代目标函数几乎不变的现象。这意味着这几次迭代的最优模型是很接近的。在这种情况下非线性解析反演不能提供较大的改进。所以,此时的非线性解析反演是没有必要的,否则只能增加计算量。

图2结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系

结合反演中每次遗传算法迭代后作一次非线性解析反演迭代

图3是另一个例子。在该结合反演例子中,每五次遗传算法迭代作一次非线性解析反演。在这里遗传算法占主要地位。此时结合反演的误差函数明显比遗传算法的小。结合反演的误差在第5次迭代末突然下降,并在第10次迭代时的小误差,遗传算法在42代才达到。遗传算法始终没有到达结合反演的最小误差。结合反演的误差在后期迭代过程中平稳下降,这是遗传算法占主导地位的原因。

从该例可知,若遗传算法与非线性解析反演方法比较合理地结合,结合反演方法比遗传算法具有快得多的收敛速度。

5结论

非线性结合反演方法扬遗传算法和非线性解析反演方法之长,抑其之短,它是一种具有较快收敛速度的全局反演方法。

在结合反演中遗传算法和非线性解析反演方法的结合方式是重要的。从算例可得出,五次遗传算法迭代后作一次非线性解析反演的结合反演的效果明显优于每次遗传算法迭代后都作非线性解析反演的结合反演的效果。但是在结合反演中连续作多少次遗传算法迭代及连续迭代次数在整个迭代过程中的可变性还有待于进一步研究。

图3结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系

结合反演中每五次遗传算法迭代后作一次非线性解析反演迭代

在结合反演中遗传算法的作用是提供接近全局最优解的初始模型。结合反演的运算速度主要取决于遗传算法的运算速度。均匀设计理论可以应用于遗传算法以加快随机搜索的速度。

与遗传算法相同,其它随机搜索方法也可用来与非线性解析反演方法形成结合反演方法。

参考文献

[1]E.Berg.Simple convergent genetic algorithm for inversion of multiparameter data.SEG60 Expanded Abstracts,1990,Ⅱ,1126~1128.

[2]O.Gauthier,J.Virieux and A.Tarantola.Two-dimensional nonlinear inversion of seismic waveforms:Numerical results.Geophysics,1986,51,1387~1403.

[3]D.E.Goldberg.Genetic Algorithms in Search,Optimiztion,and Machine Learning.Addison-Wesley,Reading,MA,1989.

[4]J.H.Holland.Adaptation in Natural and Artifical Systems.The University of Michigan Press,Ann Arbor,1975.

[5]P.Mora.2D elastic inversion of multi-offset seismic data.Geophysics,1988,52,2031~2050.

[6]G.S.Pan,R.A.Phinney,and R.I.Odom.Full-waveform inversion of plane-wave seismograms in stratified acoustic media:Theory and feasibility.Geophysics,1988,53,21~31.

[7]M.J.Porsani,P.L.Stoffa,M.K.Sen,et al..A combined Genetic and linear inversion algorithm for seismic wave-form inversion.SEG63 Expanded Abstracts,1993,692~695.

[8]M.S.Sambridge,A.Tatantola and Kennet.An alternative strategy for nonlinear inversion of seismic waveforms.Geophysical Prospecting,1991,39,723~736.

[9]M.Sambridge,and G.Drijkoningen.Genetic algorithms in seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.

[10]M.K.Sen,P.L.Stoffa.Rapid sampling of model space using genetic algorithms:examples from seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.

[11]P.L.Stoffa,M.K.Sen.Nonlinear multiparametre optimization using genetic algorithms:Inversion of plane-wave seismograms.Geophysics,1991,56,1794~1810.

[12]A.Tarantola.Inversion of seismic reflection data in the acoustic approximation.Geophysics,1984(a),49,1259~1266.

[13]A.Tarantola.The seismic reflection inverse problem.In:F.Santosa,Y.-H.Pao,W.W.System,and C.Holland Eds.Inverse problems of acoustic and elastic waves.Soc.Instr.Appl.Math.,1984(b),104~181.

[14]A.Tarantola.A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics,1986,51,1893~1903.

[15]A.Tarantola.Inverse problem theory:Methods for data fitting and model parameter estimation.Elsevier Science Publ.Co.Inc.,1987.

[16]周辉,何樵登.遗传算法在各向异性介质参数反演中的应用.长春地质学院学报,1995,25,增刊1,62~67.

[17]周辉.各向异性介质波动方程正演及其非线性反演方法研究.长春地质学院博士论文,1995.

热点内容
linux怎么编译c文件 发布:2025-09-18 09:55:16 浏览:301
python安装后无法运行 发布:2025-09-18 09:45:57 浏览:236
安卓手机怎么剪辑音乐 发布:2025-09-18 09:44:16 浏览:781
服务器地址修改在哪找 发布:2025-09-18 09:42:41 浏览:441
sntp服务器地址 发布:2025-09-18 09:28:36 浏览:552
phpunit 发布:2025-09-18 09:25:19 浏览:571
怎么改服务器的ip地址吗 发布:2025-09-18 09:24:33 浏览:12
编译703n固件 发布:2025-09-18 08:50:59 浏览:539
三星手机系统文件夹是哪个文件夹 发布:2025-09-18 08:48:45 浏览:282
rmijava 发布:2025-09-18 08:38:26 浏览:21