智能天线算法
1. 智能天线技术的基本介绍
智能天线也叫自适应阵列天线,它由天线阵、波束形成网络、波束形成算法三部分组成。它通过满足某种准则的算法去调节各阵元信号的加权幅度和相位,从而调节天线阵列的方向图形状,以达到增强所需信号抑制干扰信号的目的。智能天线技术适宜于TDD方式的CDMA系统,能够在较大程度上抑制多用户干扰、提高系统容量。但是由于存在多径效应,每个天线均需一个Rake接收机,从而使基带处理单元复杂度明显提高。
起源发展
智能天线通常包括多波束智能天线和自适应阵智能天线。智能天线最初广泛应用于雷达、声纳及军事通信领域,由于价格等因素一直未能普及到其它通信领域。
近年来,现代数字信号处理技术发展迅速,数字信号处理芯片处理能力不断提高,芯片价格已经可以为现代通信系统所接受。同时,利用数字技术在基带形成天线波束成为可能,以此代替模拟电路形成天线波束的方法,提高了天线系统的可靠性与灵活程度,智能天线技术因此开始在移动通信中得到应用。另一方面移动通信用户数增加迅速,人们对移动通话质量的要求也不断提高,这要求蜂窝小区在大容量下仍有高的话音质量。使用智能天线可以在不显着增加系统复杂度的情况下满足服务质量和扩充容量的需要。不同于常规的扇区天线和天线分集方法,通过在基站使用全向收发智能天线,可以为每个用户提供一个窄的定向波束,使信号在有限的方向区域发送和接收,充分利用了信号发射功率,降低了信号全向发射带来的电磁污染与相互干扰。不同于传统的时分多址(TDMA)、频分多址(FDMA)或码分多址(CDMA)方式,智能天线引入了第四维多址方式———空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号不同的空间传播路径而区分。
智能天线相当于空时滤波器,在多个指向不同用户的并行天线波束的控制下,可以显着降低用户信号彼此间的干扰。具体而言,智能天线将在以下方面提高了移动通信系统的性能:
⑴扩大系统的覆盖区域;
⑵增加系统容量;
⑶提高频谱利用效率;
⑷降低基站发射功率,节省系统成本,减少信号间干扰与电磁环境污染。
2. 什么是最小均方(LMS)算法
全称 Least mean square 算法。中文是最小均方算法。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。
LMS算法步骤:
1,、设置变量和参量:
X(n)为输入向量,或称为训练样本
W(n)为权值向量
b(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。
3. 智能天线的实现原理
智能天线技术前身是一种波束成形(Beamforming)技术。波束成形技术是发送方在获取一定的当前带指时刻当前位置发送方和接收方之间的信道信息,调整信号发送的参数,使得射频能量向接收方所处位置集中,从而使得接收方接收到的信号质量较好,最终能保持较高的吞吐量。该技术又分为芯片方式(On-Chip) 和硬件智能天线方式 (On-Antenna)的两种。
智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不拦尘发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。
智能天线系统的核心是智能算法,智能算法决定瞬时响应速率和电路实现的复杂程度,因此重要的是选择较好算法实现波束的智能控制。通过算法自动调整加权值得到所需空间和频率滤波器的作用。已提出很多着名算法,概括地讲有非盲算法和盲算法两大类。非盲算法是指需借助参考信号(导频序列或导频信道)的算法,此时,接收端知道发送的是什么,进行算法处理时要么先确定信道响应再按一定准则(比如最优的迫零准则zero forcing)确定各加权值,要么直接按一定的准则确定或逐渐调整权值,以使智能天线输出与已知输入最大相关,常用的相关准则有SE(最小均方误差)、LS(最小均方)和LS(最小二乘)等。盲算法则无需发端传送已知的导频信号,判决反馈算法(Decision Feedback)是一种较特殊的算法,接收端自己简行禅估计发送的信号并以此为参考信号进行上述处理,但需注意的是应确保判决信号与实际传送的信号间有较小差错。
4. 移动的SA是什么意思
智能天线(SA)作为一种可以抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。
所谓“智能夭线”就是利用数字信号处理(DSP)技术,在空间产生指向性波束,使阵列主瓣对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,从而可以高效地利用移动用户信号的空域信息最大化接收期望信号并删除或抑制干扰信号的目的。智能天线的“天线”不仅是指将传统的电磁波转化为无线频率信号,或反之将无线信号转化为电磁波的器件,这在智能天线中称为传感器件.此外,还包括合成模式网——由若干个线性时变滤波器组成.智能天线的“智能"体现在系统中的一个自适应处理器上,它能够根据得到的信号对天线输出进行加权处理,使整个链路性能达到最优化.由下图所示的智能天线组成可看出,当系统处于接收状态时,由各个天线单元接收到的信号,首先经过射频单元进行放大和下变频等处理后,再进行A/D变换,送入自适应信号处理器中与一组权值进行加权处理,合成后一路得到输出信号;另一路生成误差信号,并用它在某个选定的准则下按照一定的算法控制自适应信号处理器进行权值的更新、完成自适应信号处理。
5. 无线技术的工作原理
假设满足天线传输窄带条件,即某一入射信号在各天线单元的响应输出只有相位差异而没有幅度变化,这些相位差异由入射信号到达各天线所走路线的长度差决定。若入射信号为平面波(只有一个入射方向),则这些相位差由载波波长、入射角度、天线位置分布唯一确定。给定一组加权值、一定的入射信号强度,不同入射角度的信号由于在天线问的相位差不同,合并器后的输出信号强度也会不同。 智能天线是一种伸缩性较好的技术。在移动通信发展的早期,运营商为节约投资,总是希望用尽可能少的基站覆盖尽可能大的区域,这就意味着用户的信号在到达BTS(基站收发信设备)前可能经历了较长的传播路径,有较大的路径损耗(path loss),为使接收到的有用信号不至于低于门限,要么增加移动台的发射功率、要么增加基站天线的接收增益,由于移动台(特别是手机〕的发射功率通常是有限的,真正可行的是增加天线增益,相对而言用智能无线实现较大增益比用单天线容易。
在移动通信发展中为扩大系统容量、支持更多用户,需要收缩小区范围、降低频率复用系数提高频率利用率,通常采用的方法是小区分裂和扇区化,随之而来的是干扰增加,原来被距离(其实是借助路径损耗)有效降低的CCI和MAI较大比例地增加了。但利用智能天线,借助有用信号和干扰信号在入射角度上的差异,选择恰当的合并权值,形成正确的天线接收模式,即将主瓣对准有用信号,低增益副瓣对准主要的干扰信号,从而可更有效地抑制干扰,更大比例地降低频率复用因子(比如在GSM中使复用因子3成为可能)和同时支持更多用户(CDMA中)。从某种角度我们可将智能天线看作是更灵活、主瓣更窄的扇形天线。 要实现智能天线的下行发相对较困难,这是因为智能天线在设计发波束(transmitting beamforming)时很难准确获知下行信道的特征信息(特别是主要传播路径的出射角度),而理想的天线工作模式应是与信道相匹配的。一种方法是象IS-95上行功控一样,做成闭环测试结构,但它有以下缺点:浪费宝贵的系统资源、附加时延、受上行信道干扰等。还有一种方法是利用上行信道信息来估计下行信道,在TDD(时分双工)系统中这显然行得通,这也是中国提交的TD-SCDMA第三代建议(TDD方式)得到较多注意的主要原因。但在FDD(频分双工)系统中情况却并非如此由于上、下行信道使用的是不同频率(第三代系统相对第二代有更大的上、下行频差),上、下行信道的相关性是很弱的,很多参数并不相同,目前较多研究者相信的是上、下行信道主要传播路径的入射、出射角基本相同,所以我们只可能获得下行信道的部分信息,所形成的发波束也绝不会是最优的。
下行信道包括控制信道和业务信道控制信道,由于是大家共用的,应该形成定波束,而对应各个用户的业务信道则应用窄波束传送,也就是说它们有不同的加机系数,这样控制信道(如导频信道)和业务信道实际经历了不同的传输环境,会有不同的衰落,而移动台在做下行接收肘通常利用导频信道来估计信道的幅度和相位畸变,以对业务信道进行相干接收,但这建立在两个信道有相同传输环境基础上,显然前者并不满足这一条件,而非相干接收相对相干接收有较大的信唤比损失。一些建议(比如CDMA2000)已考虑这一点,下行信道还有辅助寻频信道(auxiliary Pilot channel),可将它也以窄波束发送,但由于数目有限,更为可行的是将它分配给一群用户(此时形成的波束也应该对准这群用户,这可能发生在热点地区和基于激活用户数较多时进行的智能扇区化中)或某一要求链路质量较高的用户(如向他传送高速数据时)。 用智能无线实现下行发面临的另一难题是由于加权是在天线前端进行的(实际中多在基带或中频实现,因更容易更灵活),后级的滤波器、D/A数模转换器、混频器、天线阵元(各路的)特性变化必然使形成的发波束发生变化,而它又不可能或很不容易用常用的反馈方法来调整加权系数以抵消这种变化,一种可行但并不是很好的方法是周期性地对后级特性进行测试和调整。
由于目前智能天线技术并不很成熟。第三代移动通信的各种后选方案除了中国的TD-SCDMA,都只将智能天线作为可选技术,没有写入具体建议中,第二代系统也普遍未采用智能天线技术,智能天线作上行收时由于对移动台的发并未提出新的要求。很容易将其作为全向天线、扇型天线的升级版本用于已有基站系统,但当智能天线用于下行发时。通常会对移动台的收也提出新要求。牵涉面大,灵活性较小。
目前的移动通信系统(主要是窄带CDMA系统)存在下行容量超过上行的现象,即使考虑软切换的损失情况依然如此,从表面看提高上行容量是当务之急,但在第三代系统中高速数据、多媒体业务更可能出现在下行信道中,考虑到这种非对称需求,以后的瓶颈可能是下行,所以虽然存在上述的种种困难,研究智能天线的下行发依然是很必要和很迫切的。
TDD方式下的下行发和上行收处理差别不大,这里不单独论述。 全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大,信道模型简单,收敛速度较慢,在某些情况下甚至可能出现错误收敛等缺点,实际信道条件下当干扰较多、多径严重、特别是信道快速时变时,很难对某一用户进行实时跟踪。正是在这一背景下,基于预多波束的切换波束工作方式被提出。此时全空域(各种可能的入射角)被一些预先计算好的波束分割覆盖,各组权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠,接收时的主要任务是挑选一个(也有可能是几个,但需合并后再输出)作为工作模式与自适应方式相比它显然更容易实现,实际上我们可将其看作是介于扇形天线与全自适应天线问的一种技术。波束切换天线中值得研究的有以下内容:如何划分空域,即确定波束的问题,包括数目和形状;挑选波束的准则;波束跟踪的实现,主要指的是实现快速搜索算法等;以及切换波束与自适应波束成型的理论关系。
作为智能天线研究的基础,建立更合理的信道传播模型,研究天线各阵元的较优位置分布等都是很有意义的。 更多内容请看无线网状网介绍、Wimax技术与趋势、家庭无线局域网专题,或进入讨论组讨论。