当前位置:首页 » 操作系统 » des算法c实现

des算法c实现

发布时间: 2025-09-14 19:51:50

‘壹’ des算法加密解密的实现

本文介绍了一种国际上通用的加密算法—DES算法的原理,并给出了在VC++6.0语言环境下实现的源代码。最后给出一个示例,以供参考。
关键字:DES算法、明文、密文、密钥、VC;

本文程序运行效果图如下:

正文:
当今社会是信息化的社会。为了适应社会对计算机数据安全保密越来越高的要求,美国国家标准局(NBS)于1997年公布了一个由IBM公司研制的一种加密算法,并且确定为非机要部门使用的数据加密标准,简称DES(Data Encrypton Standard)。自公布之日起,DES算法作为国际上商用保密通信和计算机通信的最常用算法,一直活跃在国际保密通信的舞台上,扮演了十分突出的角色。现将DES算法简单介绍一下,并给出实现DES算法的VC源代码。
DES算法由加密、解密和子密钥的生成三部分组成。

一.加密

DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:

IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:

f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。

R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:

对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:

E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31

膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:

P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:

在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。(S表如图所示)

至此,DES算法加密原理讲完了。在VC++6.0下的程序源代码为:

for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串输入,经过IP置换。

下面进行迭代。由于各次迭代的方法相同只是输入输出不同,因此只给出其中一次。以第八次为例://进行第八次迭代。首先进行S盒的运算,输入32位比特串。
for(i=1;i<=48;i++)//经过E变换扩充,由32位变为48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//与K8按位作不进位加法运算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8组
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面经过S盒,得到8个数。S1,s2,s3,s4,s5,s6,s7,s8分别为S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8个数变换输出二进制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//经过P变换
frk[i]=f[P[i-1]];//S盒运算完成
for(i=1;i<33;i++)//左右交换
L8[i]=R7[i];
for(i=1;i<33;i++)//R8为L7与f(R,K)进行不进位二进制加法运算结果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}

[ 原创文档 本文适合中级读者 已阅读21783次 ] 文档 代码 工具

DES算法及其在VC++6.0下的实现(下)
作者:航天医学工程研究所四室 朱彦军

在《DES算法及其在VC++6.0下的实现(上)》中主要介绍了DES算法的基本原理,下面让我们继续:

二.子密钥的生成
64比特的密钥生成16个48比特的子密钥。其生成过程见图:

子密钥生成过程具体解释如下:
64比特的密钥K,经过PC-1后,生成56比特的串。其下标如表所示:

PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

该比特串分为长度相等的比特串C0和D0。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:

PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2……依次类推直至生成子密钥K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:

迭代顺序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

生成子密钥的VC程序源代码如下:

for(i=1;i<57;i++)//输入64位K,经过PC-1变为56位 k0[i]=k[PC_1[i-1]];

56位的K0,均分为28位的C0,D0。C0,D0生成K1和C1,D1。以下几次迭代方法相同,仅以生成K8为例。 for(i=1;i<27;i++)//循环左移两位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密钥k8

注意:生成的子密钥不同,所需循环左移的位数也不同。源程序中以生成子密钥 K8为例,所以循环左移了两位。但在编程中,生成不同的子密钥应以Lsi表为准。

三.解密

DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:

加密后的结果

L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:
得 L=R0, R=L0。
其程序源代码与加密相同。在此就不重写。

四.示例
例如:已知明文m=learning, 密钥 k=computer。
明文m的ASCII二进制表示:

m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111

密钥k的ASCII二进制表示:

k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010

明文m经过IP置换后,得:

11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000

等分为左右两段:

L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000

经过16次迭代后,所得结果为:

L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=

其中,f函数的结果为:

f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=

16个子密钥为:

K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=

S盒中,16次运算时,每次的8 个结果为:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;

子密钥生成过程中,生成的数值为:

C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000

解密过程与加密过程相反,所得的数据的顺序恰好相反。在此就不赘述。

参考书目:
《计算机系统安全》 重庆出版社 卢开澄等编着
《计算机密码应用基础》 科学出版社 朱文余等编着
《Visual C++ 6.0 编程实例与技巧》 机械工业出版社 王华等编着

‘贰’ des加密算法(c/c++)

des.h文件:

#ifndefCRYPTOPP_DES_H

#defineCRYPTOPP_DES_H

#include"cryptlib.h"

#include"misc.h"

NAMESPACE_BEGIN(CryptoPP)

classDES:publicBlockTransformation

{

public:

DES(constbyte*userKey,CipherDir);

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const

{DES::ProcessBlock(inoutBlock,inoutBlock);}

enum{KEYLENGTH=8,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

protected:

staticconstword32Spbox[8][64];

SecBlock<word32>k;

};

classDESEncryption:publicDES

{

public:

DESEncryption(constbyte*userKey)

:DES(userKey,ENCRYPTION){}

};

classDESDecryption:publicDES

{

public:

DESDecryption(constbyte*userKey)

:DES(userKey,DECRYPTION){}

};

classDES_EDE_Encryption:publicBlockTransformation

{

public:

DES_EDE_Encryption(constbyte*userKey)

:e(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe,d;

};

classDES_EDE_Decryption:publicBlockTransformation

{

public:

DES_EDE_Decryption(constbyte*userKey)

:d(userKey,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd,e;

};

classTripleDES_Encryption:publicBlockTransformation

{

public:

TripleDES_Encryption(constbyte*userKey)

:e1(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION),

e2(userKey+2*DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe1,d,e2;

};

classTripleDES_Decryption:publicBlockTransformation

{

public:

TripleDES_Decryption(constbyte*userKey)

:d1(userKey+2*DES::KEYLENGTH,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION),

d2(userKey,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd1,e,d2;

};

NAMESPACE_END

#endif

des.cpp文件:

//des.cpp-modifiedbyWeiDaifrom:

/*

*

*circa1987,'s1977

*publicdomaincode.,but

*theactualencrypt/

*Outerbridge'sDEScodeasprintedinSchneier's"AppliedCryptography."

*

*Thiscodeisinthepublicdomain.Iwouldappreciatebugreportsand

*enhancements.

*

*PhilKarnKA9Q,[email protected],August1994.

*/

#include"pch.h"

#include"misc.h"

#include"des.h"

NAMESPACE_BEGIN(CryptoPP)

/*

*Threeofthesetables,theinitialpermutation,thefinal

*,areregularenoughthat

*forspeed,wehard-codethem.They'rehereforreferenceonly.

*Also,,gensp.c,

*tobuildthecombinedSPbox,Spbox[].They'realsoherejust

*forreference.

*/

#ifdefnotdef

/*initialpermutationIP*/

staticbyteip[]={

58,50,42,34,26,18,10,2,

60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6,

64,56,48,40,32,24,16,8,

57,49,41,33,25,17,9,1,

59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,

63,55,47,39,31,23,15,7

};

/*finalpermutationIP^-1*/

staticbytefp[]={

40,8,48,16,56,24,64,32,

39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,

37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,

35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58,26,

33,1,41,9,49,17,57,25

};

/*expansionoperationmatrix*/

staticbyteei[]={

32,1,2,3,4,5,

4,5,6,7,8,9,

8,9,10,11,12,13,

12,13,14,15,16,17,

16,17,18,19,20,21,

20,21,22,23,24,25,

24,25,26,27,28,29,

28,29,30,31,32,1

};

/*The(in)famousS-boxes*/

staticbytesbox[8][64]={

/*S1*/

14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

/*S2*/

15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

/*S3*/

10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

/*S4*/

7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

/*S5*/

2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

/*S6*/

12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

/*S7*/

4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

/*S8*/

13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11

};

/*32--boxes*/

staticbytep32i[]={

16,7,20,21,

29,12,28,17,

1,15,23,26,

5,18,31,10,

2,8,24,14,

32,27,3,9,

19,13,30,6,

22,11,4,25

};

#endif

/*permutedchoicetable(key)*/

staticconstbytepc1[]={

57,49,41,33,25,17,9,

1,58,50,42,34,26,18,

10,2,59,51,43,35,27,

19,11,3,60,52,44,36,

63,55,47,39,31,23,15,

7,62,54,46,38,30,22,

14,6,61,53,45,37,29,

21,13,5,28,20,12,4

};

/*numberleftrotationsofpc1*/

staticconstbytetotrot[]={

1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/*permutedchoicekey(table)*/

staticconstbytepc2[]={

14,17,11,24,1,5,

3,28,15,6,21,10,

23,19,12,4,26,8,

16,7,27,20,13,2,

41,52,31,37,47,55,

30,40,51,45,33,48,

44,49,39,56,34,53,

46,42,50,36,29,32

};

/*EndofDES-definedtables*/

/*bit0isleft-mostinbyte*/

staticconstintbytebit[]={

0200,0100,040,020,010,04,02,01

};

/*Setkey(initializekeyschelearray)*/

DES::DES(constbyte*key,CipherDirdir)

:k(32)

{

SecByteBlockbuffer(56+56+8);

byte*constpc1m=buffer;/*placetomodifypc1into*/

byte*constpcr=pc1m+56;/*placetorotatepc1into*/

byte*constks=pcr+56;

registerinti,j,l;

intm;

for(j=0;j<56;j++){/*convertpc1tobitsofkey*/

l=pc1[j]-1;/*integerbitlocation*/

m=l&07;/*findbit*/

pc1m[j]=(key[l>>3]&/*findwhichkeybytelisin*/

bytebit[m])/*andwhichbitofthatbyte*/

?1:0;/*andstore1-bitresult*/

}

for(i=0;i<16;i++){/*keychunkforeachiteration*/

memset(ks,0,8);/*Clearkeyschele*/

for(j=0;j<56;j++)/*rotatepc1therightamount*/

pcr[j]=pc1m[(l=j+totrot[i])<(j<28?28:56)?l:l-28];

/**/

for(j=0;j<48;j++){/*selectbitsindivially*/

/*checkbitthatgoestoks[j]*/

if(pcr[pc2[j]-1]){

/*maskitinifit'sthere*/

l=j%6;

ks[j/6]|=bytebit[l]>>2;

}

}

/*Nowconverttoodd/eveninterleavedformforuseinF*/

k[2*i]=((word32)ks[0]<<24)

|((word32)ks[2]<<16)

|((word32)ks[4]<<8)

|((word32)ks[6]);

k[2*i+1]=((word32)ks[1]<<24)

|((word32)ks[3]<<16)

|((word32)ks[5]<<8)

|((word32)ks[7]);

}

if(dir==DECRYPTION)//reversekeyscheleorder

for(i=0;i<16;i+=2)

{

std::swap(k[i],k[32-2-i]);

std::swap(k[i+1],k[32-1-i]);

}

}

/**/

/*Ccodeonlyinportableversion*/

//RichardOuterbridge'sinitialpermutationalgorithm

/*

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

work=((left>>4)^right)&0x0f0f0f0f;

right^=work;

left^=work<<4;

work=((left>>16)^right)&0xffff;

right^=work;

left^=work<<16;

work=((right>>2)^left)&0x33333333;

left^=work;

right^=(work<<2);

work=((right>>8)^left)&0xff00ff;

left^=work;

right^=(work<<8);

right=rotl(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotl(left,1);

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotr(left,1);

work=((left>>8)^right)&0xff00ff;

right^=work;

left^=work<<8;

work=((left>>2)^right)&0x33333333;

right^=work;

left^=work<<2;

work=((right>>16)^left)&0xffff;

left^=work;

right^=work<<16;

work=((right>>4)^left)&0x0f0f0f0f;

left^=work;

right^=work<<4;

}

*/

//WeiDai''sinitialpermutation

//algorithm,

//(likeinMSVC)

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

right=rotl(right,4U);

work=(left^right)&0xf0f0f0f0;

left^=work;

right=rotr(right^work,20U);

work=(left^right)&0xffff0000;

left^=work;

right=rotr(right^work,18U);

work=(left^right)&0x33333333;

left^=work;

right=rotr(right^work,6U);

work=(left^right)&0x00ff00ff;

left^=work;

right=rotl(right^work,9U);

work=(left^right)&0xaaaaaaaa;

left=rotl(left^work,1U);

right^=work;

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1U);

work=(left^right)&0xaaaaaaaa;

right^=work;

left=rotr(left^work,9U);

work=(left^right)&0x00ff00ff;

right^=work;

left=rotl(left^work,6U);

work=(left^right)&0x33333333;

right^=work;

left=rotl(left^work,18U);

work=(left^right)&0xffff0000;

right^=work;

left=rotl(left^work,20U);

work=(left^right)&0xf0f0f0f0;

right^=work;

left=rotr(left^work,4U);

}

//

voidDES::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

word32l,r,work;

#ifdefIS_LITTLE_ENDIAN

l=byteReverse(*(word32*)inBlock);

r=byteReverse(*(word32*)(inBlock+4));

#else

l=*(word32*)inBlock;

r=*(word32*)(inBlock+4);

#endif

IPERM(l,r);

constword32*kptr=k;

for(unsignedi=0;i<8;i++)

{

work=rotr(r,4U)^kptr[4*i+0];

l^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=r^kptr[4*i+1];

l^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

work=rotr(l,4U)^kptr[4*i+2];

r^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=l^kptr[4*i+3];

r^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

}

FPERM(l,r);

#ifdefIS_LITTLE_ENDIAN

*(word32*)outBlock=byteReverse(r);

*(word32*)(outBlock+4)=byteReverse(l);

#else

*(word32*)outBlock=r;

*(word32*)(outBlock+4)=l;

#endif

}

voidDES_EDE_Encryption::ProcessBlock(byte*inoutBlock)const

{

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

}

voidDES_EDE_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e.ProcessBlock(outBlock);

}

voidDES_EDE_Decryption::ProcessBlock(byte*inoutBlock)const

{

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

}

voidDES_EDE_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d.ProcessBlock(outBlock);

}

voidTripleDES_Encryption::ProcessBlock(byte*inoutBlock)const

{

e1.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e2.ProcessBlock(inoutBlock);

}

voidTripleDES_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e1.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e2.ProcessBlock(outBlock);

}

voidTripleDES_Decryption::ProcessBlock(byte*inoutBlock)const

{

d1.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d2.ProcessBlock(inoutBlock);

}

voidTripleDES_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d1.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d2.ProcessBlock(outBlock);

}

NAMESPACE_END

程序运行如下:

‘叁’ DES算法,求c++代码。IP置换。 1.随机产生64位二进制数 2.根据IP置换表,将此64位二

DES算法,IP置换的功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:

58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例

如:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。

其典型C代码实现如下:
定义IP置换表如上表,char类型数组,长度为64;
然后,在从0到64循环,把源数组的数据按IP置换表的内容填到目的数组,即实现了IP置换;

// initial permutation (IP)
const static char IP_Table[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};

void DES_InitialPermuteData(char* src,char* dst)
{
//IP
int i=0;
for(i=0;i<64;i++)
{
dst[i] =src[IP_Table[i]-1];
}
}

‘肆’ 使用C/C++语言,将DES/AES加密算法,用代码实现

哎,学校大作业吧。核心是des和aes的算法呗,自己一点点写代码量不很少呢。没时间给你写了。
不过有个很好的偷懒办法:建议lz你去找一下OpenSSL的源码。里面有AES,DES的原生C实现。现成函数。lz你直接从里面抠出来复制到你工程里就行了。。

‘伍’ des解密算法,利用c语言解密JAVA语言加密的密码。。密钥为12345678,加密后的密文为:26d086be3a3a62fc

// C 语言 DES用的是 ECB模式, 没有填充
// 因此Java端要对应, 你的明文是 liubiao 吗?
// 另外 DES已经不安全了, 如果可以改为 3DES或者 AES吧。
public class LearnDes {

public static void main(String[] args) {
try {
System.out.println(encrypt("liubiao", "12345678"));

System.out.println(decrypt("26d086be3a3a62fc", "12345678"));
} catch (Exception e) {
e.printStackTrace();
}
}
public static String encrypt(String message, String key) throws Exception {
//Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
Cipher cipher = Cipher.getInstance("DES/ECB/NOPADDING");

DESKeySpec desKeySpec = new DESKeySpec(key.getBytes("UTF-8"));

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey secretKey = keyFactory.generateSecret(desKeySpec);
IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));
//cipher.init(Cipher.ENCRYPT_MODE, secretKey, iv);
cipher.init(Cipher.ENCRYPT_MODE, secretKey );

return toHexString(cipher.doFinal(message.getBytes("UTF-8")));
}

public static String decrypt(String message, String key) throws Exception {

byte[] bytesrc = convertHexString(message);

//Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
Cipher cipher = Cipher.getInstance("DES/ECB/NOPADDING");
DESKeySpec desKeySpec = new DESKeySpec(key.getBytes("UTF-8"));
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey secretKey = keyFactory.generateSecret(desKeySpec);
IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));

//cipher.init(Cipher.DECRYPT_MODE, secretKey, iv);
cipher.init(Cipher.DECRYPT_MODE, secretKey );

byte[] retByte = cipher.doFinal(bytesrc);
return new String(retByte);
}

public static byte[] convertHexString(String ss) {
byte digest[] = new byte[ss.length() / 2];
for (int i = 0; i < digest.length; i++) {
String byteString = ss.substring(2 * i, 2 * i + 2);
int byteValue = Integer.parseInt(byteString, 16);
digest[i] = (byte) byteValue;
}

return digest;
}
public static String toHexString(byte b[]) {
StringBuffer hexString = new StringBuffer();
for (int i = 0; i < b.length; i++) {
String plainText = Integer.toHexString(0xff & b[i]);
if (plainText.length() < 2)
plainText = "0" + plainText;
hexString.append(plainText);
}

return hexString.toString();
}
}

‘陆’ 求一个用c语言写的DES加密算法~~

using system;
using system.security.cryptography;
using system.io;
using system.text;

public class encryptstringdes {

public static void main(string);
return;
}

// 使用utf8函数加密输入参数
utf8encoding utf8encoding = new utf8encoding();
byte.tochararray());

// 方式一:调用默认的des实现方法des_csp.
des des = des.create();
// 方式二:直接使用des_csp()实现des的实体
//des_csp des = new des_csp();

// 初始化des加密的密钥和一个随机的、8比特的初始化向量(iv)
byte iv = {0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};
des.key = key;
des.iv = iv;

// 建立加密流
symmetricstreamencryptor sse = des.createencryptor();

// 使用cryptomemorystream方法获取加密过程的输出
cryptomemorystream cms = new cryptomemorystream();

// 将symmetricstreamencryptor流中的加密数据输出到cryptomemorystream中
sse.setsink(cms);

// 加密完毕,将结果输出到控制台
sse.write(inputbytearray);
sse.closestream();

// 获取加密数据
byte);
}
console.writeline();

//上面演示了如何进行加密,下面演示如何进行解密
symmetricstreamdecryptor ssd = des.createdecryptor();
cms = new cryptomemorystream();
ssd.setsink(cms);
ssd.write(encrypteddata);
ssd.closestream();

byte decryptedchararray = utf8encoding.getchars(decrypteddata);
console.writeline("解密后数据:");
console.write(decryptedchararray);
console.writeline();
}
}

编译

d:\csharp>csc des_demo.cs
microsoft (r) c# compiler version 7.00.8905
right (c) microsoft corp 2000. all rights reserved.

运行实例:
d:\csharp>des_demo.exe 使用c#编写des加密程序的framework

加密结果:
3d 22 64 c6 57 d1 c4 c3 cf 77 ce 2f d0 e1 78 2a 4d ed 7a a8 83 f9 0e 14 e1 ba 38
7b 06 41 8d b5 e9 3f 00 0d c3 28 d1 f9 6d 17 4b 6e a7 41 68 40

‘柒’ 求教des算法的详细过程

des算法的详细过程:
1-1、变换密钥
取得64位的密钥,每个第8位作为奇偶校验位。
1-2、变换密钥。
1-2-1、舍弃64位密钥中的奇偶校验位,根据下表(PC-1)进行密钥变换得到56位的密钥,在变换中,奇偶校验位以被舍弃。
Permuted Choice 1 (PC-1)
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
1-2-2、将变换后的密钥分为两个部分,开始的28位称为C[0],最后的28位称为D[0]。
1-2-3、生成16个子密钥,初始I=1。
1-2-3-1、同时将C[I]、D[I]左移1位或2位,根据I值决定左移的位数。见下表
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
1-2-3-2、将C[I]D[I]作为一个整体按下表(PC-2)变换,得到48位的K[I]
Permuted Choice 2 (PC-2)
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
1-2-3-3、从1-2-3-1处循环执行,直到K[16]被计算完成。
2、处理64位的数据
2-1、取得64位的数据,如果数据长度不足64位,应该将其扩展为64位(例如补零)
2-2、将64位数据按下表变换(IP)
Initial Permutation (IP)
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
2-3、将变换后的数据分为两部分,开始的32位称为L[0],最后的32位称为R[0]。
2-4、用16个子密钥加密数据,初始I=1。
2-4-1、将32位的R[I-1]按下表(E)扩展为48位的E[I-1]
Expansion (E)
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
2-4-2、异或E[I-1]和K[I],即E[I-1] XOR K[I]
2-4-3、将异或后的结果分为8个6位长的部分,第1位到第6位称为B[1],第7位到第12位称为B[2],依此类推,第43位到第48位称为B[8]。
2-4-4、按S表变换所有的B[J],初始J=1。所有在S表的值都被当作4位长度处理。
2-4-4-1、将B[J]的第1位和第6位组合为一个2位长度的变量M,M作为在S[J]中的行号。
2-4-4-2、将B[J]的第2位到第5位组合,作为一个4位长度的变量N,N作为在S[J]中的列号。
2-4-4-3、用S[J][M][N]来取代B[J]。
Substitution Box 1 (S[1])
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S[2]
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S[3]
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S[4]
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S[5]
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S[6]
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S[7]
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S[8]
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
2-4-4-4、从2-4-4-1处循环执行,直到B[8]被替代完成。
2-4-4-5、将B[1]到B[8]组合,按下表(P)变换,得到P。
Permutation P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
2-4-6、异或P和L[I-1]结果放在R[I],即R[I]=P XOR L[I-1]。
2-4-7、L[I]=R[I-1]
2-4-8、从2-4-1处开始循环执行,直到K[16]被变换完成。
2-4-5、组合变换后的R[16]L[16](注意:R作为开始的32位),按下表(IP-1)变换得到最后的结果。
Final Permutation (IP**-1)
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
以上就是DES算法的描述。

‘捌’ 用c实现des算法!!!

/* d3des.h -
*
* Headers and defines for d3des.c
* Graven Imagery, 1992.
*
* Copyright (c) 1988,1989,1990,1991,1992 by Richard Outerbridge
* (GEnie : OUTER; CIS : [71755,204])
*/

#define D2_DES /* include double-length support */
#define D3_DES /* include triple-length support */

#ifdef D3_DES
#ifndef D2_DES
#define D2_DES /* D2_DES is needed for D3_DES */
#endif
#endif

#define EN0 0 /* MODE == encrypt */
#define DE1 1 /* MODE == decrypt */

/* A useful alias on 68000-ish machines, but NOT USED HERE. */

typedef union {
unsigned long blok[2];
unsigned short word[4];
unsigned char byte[8];
} M68K;

extern void deskey(unsigned char *, short);
/* hexkey[8] MODE
* Sets the internal key register according to the hexadecimal
* key contained in the 8 bytes of hexkey, according to the DES,
* for encryption or decryption according to MODE.
*/

extern void usekey(unsigned long *);
/* cookedkey[32]
* Loads the internal key register with the data in cookedkey.
*/

extern void cpkey(unsigned long *);
/* cookedkey[32]
* Copies the contents of the internal key register into the storage
* located at &cookedkey[0].
*/

extern void des(unsigned char *, unsigned char *);
/* from[8] to[8]
* Encrypts/Decrypts (according to the key currently loaded in the
* internal key register) one block of eight bytes at address 'from'
* into the block at address 'to'. They can be the same.
*/

#ifdef D2_DES

#define desDkey(a,b) des2key((a),(b))
extern void des2key(unsigned char *, short);
/* hexkey[16] MODE
* Sets the internal key registerS according to the hexadecimal
* keyS contained in the 16 bytes of hexkey, according to the DES,
* for DOUBLE encryption or decryption according to MODE.
* NOTE: this clobbers all three key registers!
*/

extern void Ddes(unsigned char *, unsigned char *);
/* from[8] to[8]
* Encrypts/Decrypts (according to the keyS currently loaded in the
* internal key registerS) one block of eight bytes at address 'from'
* into the block at address 'to'. They can be the same.
*/

extern void D2des(unsigned char *, unsigned char *);
/* from[16] to[16]
* Encrypts/Decrypts (according to the keyS currently loaded in the
* internal key registerS) one block of SIXTEEN bytes at address 'from'
* into the block at address 'to'. They can be the same.
*/

extern void makekey(char *, unsigned char *);
/* *password, single-length key[8]
* With a double-length default key, this routine hashes a NULL-terminated
* string into an eight-byte random-looking key, suitable for use with the
* deskey() routine.
*/

#define makeDkey(a,b) make2key((a),(b))
extern void make2key(char *, unsigned char *);
/* *password, double-length key[16]
* With a double-length default key, this routine hashes a NULL-terminated
* string into a sixteen-byte random-looking key, suitable for use with the
* des2key() routine.
*/

#ifndef D3_DES /* D2_DES only */

#define useDkey(a) use2key((a))
#define cpDkey(a) cp2key((a))

extern void use2key(unsigned long *);
/* cookedkey[64]
* Loads the internal key registerS with the data in cookedkey.
* NOTE: this clobbers all three key registers!
*/

extern void cp2key(unsigned long *);
/* cookedkey[64]
* Copies the contents of the internal key registerS into the storage
* located at &cookedkey[0].
*/

#else /* D3_DES too */

#define useDkey(a) use3key((a))
#define cpDkey(a) cp3key((a))

extern void des3key(unsigned char *, short);
/* hexkey[24] MODE
* Sets the internal key registerS according to the hexadecimal
* keyS contained in the 24 bytes of hexkey, according to the DES,
* for DOUBLE encryption or decryption according to MODE.
*/

extern void use3key(unsigned long *);
/* cookedkey[96]
* Loads the 3 internal key registerS with the data in cookedkey.
*/

extern void cp3key(unsigned long *);
/* cookedkey[96]
* Copies the contents of the 3 internal key registerS into the storage
* located at &cookedkey[0].
*/

extern void make3key(char *, unsigned char *);
/* *password, triple-length key[24]
* With a triple-length default key, this routine hashes a NULL-terminated
* string into a twenty-four-byte random-looking key, suitable for use with
* the des3key() routine.
*/

#endif /* D3_DES */
#endif /* D2_DES */

热点内容
ae源码 发布:2025-09-14 21:28:15 浏览:69
phpweb服务器 发布:2025-09-14 21:22:01 浏览:768
ftp想再传输的文件怎么获取 发布:2025-09-14 20:44:43 浏览:914
sqlserver数据库置疑 发布:2025-09-14 20:42:37 浏览:495
实参与其对应的形参各占用独立的存储单元 发布:2025-09-14 20:17:44 浏览:329
面板系统后台ftp啥意思 发布:2025-09-14 20:09:34 浏览:982
最小二乘法python 发布:2025-09-14 19:58:02 浏览:223
des算法c实现 发布:2025-09-14 19:51:50 浏览:477
mssql清空数据库数据 发布:2025-09-14 19:25:40 浏览:116
安卓机为什么越用内存越少 发布:2025-09-14 19:24:47 浏览:349