cpu缓存结构
Ⅰ CPU的一、二、三级缓存分别有什么用
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是从CPU芯片面积和成本的因素来考虑,缓存都很小。x0dx0ax0dx0aL1 Cache(一级缓存)x0dx0a L1 CPU缓存x0dx0aCache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。x0dx0ax0dx0aL2 Cache(二级缓存)x0dx0a L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是4MB,而服务器和工作站上用CPU的L2高速缓存更高达2MB—4MB,有的高达8MB或者19MB。x0dx0ax0dx0aL3 Cache(三级缓存)x0dx0a L3 C CPU缓存x0dx0aache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 x0dx0ax0dx0a其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。 但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。x0dx0ax0dx0a 具体的你到网络上有!!
Ⅱ cpu和GPU有什么区别。
CPU和GPU主要由以下5个方面的区别:
一、概念
1、CPU(Central Processing Unit-中央处理器),是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。
二、缓存
1、CPU有大量的缓存结构,目前主流的CPU芯片上都有四级缓存,这些缓存结构消耗了大量的晶体管,在运行的时候需要大量的电力。
2、GPU的缓存就很简单,目前主流的GPU芯片最多有两层缓存,而且GPU可以利用晶体管上的空间和能耗做成ALU单元,因此GPU比CPU的效率要高一些。
三、响应方式
1、CPU要求的是实时响应,对单任务的速度要求很高,所以就要用很多层缓存的办法来保证单任务的速度。
2、GPU是把所有的任务都排好,然后再批处理,对缓存的要求相对很低。
四、浮点运算方式
1、CPU除了负责浮点整形运算外,还有很多其他的指令集的负载,比如像多媒体解码,硬件解码等,因此CPU是多才多艺的。CPU注重的是单线程的性能,要保证指令流不中断,需要消耗更多的晶体管和能耗用在控制部分,于是CPU分配在浮点计算的功耗就会变少。
2、GPU基本上只做浮点运算的,设计结构简单,也就可以做的更快。GPU注重的是吞吐量,单指令能驱动更多的计算,相比较GPU消耗在控制部分的能耗就比较少,因此可以把电省下来的资源给浮点计算使用。
五、应用方向
1、CPU所擅长的像操作系统这一类应用,需要快速响应实时信息,需要针对延迟优化,所以晶体管数量和能耗都需要用在分支预测、乱序执行、低延迟缓存等控制部分。
2、GPU适合对于具有极高的可预测性和大量相似的运算以及高延迟、高吞吐的架构运算。
Ⅲ 电脑CPU所谓的,一级二级三级缓存分别在什么位置
CPU中缓存是为了加快CPU读取数据的速度,也是为了给内存一个缓冲期。因为CPU运算速度太快了,光靠内存读写完全跟不上,而CPU缓存的数据交换比内存快多了,大部分时候CPU可以直接从缓存读取数据,找不到的话再从内存读取,这样可以节省CPU读取内存数据时浪费的时间。
CPU缓存分为三类,一级缓存(L1)、二级缓存(L2)和三级缓存(L3)。CPU在实际数据读取中重要的却是一级缓存,因为一级缓存速度最快,二级缓存其次,三级缓存最慢,只是三级缓存的容量最大。
(3)cpu缓存结构扩展阅读:
一级缓存虽然速度最快,但容量最小,单位都是KB,不同CPU之间一级缓存没有差距,所以现在不怎么提了,二级缓存容量也不大,基本都是个位数MB,除了一些服务器CPU会有10几MB之外,现在CPU也不怎么提二级缓存。CPU读取缓存时会先从一级缓存开始,然是二级缓存,而读取二级缓存有时候会出现数据未命中的情况,这时候就需要从三级缓存读取。
但是要注意的是三级缓存越大并不一定说这个CPU性能就越强,因为三级缓存的容量还依靠CPU架构和工艺等方面的影响,如果是与架构工艺搭配升级的三级缓存,容量越大才会性能越高。
Ⅳ CPU多级缓存架构
1、基本概念
1.1、总线
前端总线(FSB)就是负责将CPU连接到内存的一座桥,前端总线频率则直接影响CPU与内存数据交换速度,如果FSB频率越高,说明这座桥越宽,可以同时通过的车辆越多,这样CPU处理的速度就更快。目前PC机上CPU前端总线频率有533MHz、800MHz、1066MHz、1333MHz、1600MHz等几种,前端总线频率越高,CPU与内存之间的数据传输量越大。
前端总线——Front Side Bus(FSB),是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者搭配问题,一般来说,前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。
1.2、频率与降频
只支持1333内存频率的cpu和主板配1600内存条就会降频。核心数跟ddr2和ddr3没关系,核心数是cpu本身的性质,cpu是四核的就是四核的,是双核的就是双核的。如果cpu只支持1333,而主板支持1600,那也会降频;cpu支持1600而主板只支持1333那不仅内存会降频,而且发挥不出cpu全部性能。
另外如果是较新的主板cpu,已经采用新的qpi总线,而不是以前的fsb总线。以前的fsb总线一般是总线为多少就支持多高的内存频率。而qpi总线的cpu集成了内存控制器,5.0gt/s的cpu可能只支持1333内存频率,但是总线带宽相当于1333内存的内存带宽的两倍,这时候,组成1333双通道,内存速度就会翻倍,相当于2666的内存频率。
1.3、cache line
Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。
2、CPU多级缓存架构
级别越小的缓存,越接近CPU, 意味着速度越快且容量越少。
3、多核CPU多级缓存一致性协议MESI
为了解决这个问题,芯片设计者制定了一个规则。当一个 CPU 修改高速缓存行中的字节时,计算机中的其它 CPU 会被通知,它们的高速缓存将视为无效。于是,在上面的情况下, CPU2 发现自己的高速缓存中数据已无效, CPU1 将立即把自己的数据写回 RAM ,然后 CPU2 重新读取该数据。 可以看出,高速缓存行在多处理器上会导致一些不利。
多核CPU的情况下有多个一级缓存,如何保证缓存内部数据的一致,不让系统数据混乱。这里就引出了一个一致性的协议MESI。
MESI 是指4中状态的首字母。每个Cache line有4个状态,可用2个bit表示,它们分别是:
注意: 对于M和E状态而言总是精确的,他们在和该缓存行的真正状态是一致的,而S状态可能是非一致的。如果一个缓存将处于S状态的缓存行作废了,而另一个缓存实际上可能已经独享了该缓存行,但是该缓存却不会将该缓存行升迁为E状态,这是因为其它缓存不会广播他们作废掉该缓存行的通知,同样由于缓存并没有保存该缓存行的的数量,因此(即使有这种通知)也没有办法确定自己是否已经独享了该缓存行。
从上面的意义看来E状态是一种投机性的优化:如果一个CPU想修改一个处于S状态的缓存行,总线事务需要将所有该缓存行的变成invalid状态,而修改E状态的缓存不需要使用总线事务。
3.2、MESI状态转换
1.触发事件
触发事件描述本地读取(Local read)本地cache读取本地cache数据本地写入(Local write)本地cache写入本地cache数据远端读取(Remote read)其他cache读取本地cache数据远端写入(Remote write)其他cache写入本地cache数据
2.cache分类:
前提:所有的cache共同缓存了主内存中的某一条数据。
本地cache:指当前cpu的cache。
触发cache:触发读写事件的cache。
其他cache:指既除了以上两种之外的cache。
注意:本地的事件触发 本地cache和触发cache为相同。
下图示意了,当一个cache line的调整的状态的时候,另外一个cache line 需要调整的状态。
3.3、多核缓存协同操作
假设有三个CPU A、B、C,对应三个缓存分别是cache a、b、 c。在主内存中定义了x的引用值为0。
单核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
从主内存通过bus读取到缓存中(远端读取Remote read),这是该Cache line修改为E状态(独享).
双核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
CPU A从主内存通过bus读取到 cache a中并将该cache line 设置为E状态。
CPU B发出了一条指令,从主内存中读取x。
CPU B试图从主内存中读取x时,CPU A检测到了地址冲突。这时CPU A对相关数据做出响应。此时x 存储于cache a和cache b中,x在chche a和cache b中都被设置为S状态(共享)。
修改数据
那么执行流程是:
CPU A 计算完成后发指令需要修改x.
CPU A 将x设置为M状态(修改)并通知缓存了x的CPU B, CPU B将本地cache b中的x设置为I状态(无效)
CPU A 对x进行赋值。
同步数据
那么执行流程是:
CPU B 发出了要读取x的指令。
CPU B 通知CPU A,CPU A将修改后的数据同步到主内存时cache a 修改为E(独享)
CPU A同步CPU B的x,将cache a和同步后cache b中的x设置为S状态(共享)。
MESI优化和他们引入的问题
缓存的一致性消息传递是要时间的,这就使其切换时会产生延迟。当一个缓存被切换状态时其他缓存收到消息完成各自的切换并且发出回应消息这么一长串的时间中CPU都会等待所有缓存响应完成。可能出现的阻塞都会导致各种各样的性能问题和稳定性问题。
CPU切换状态阻塞解决-存储缓存(Store Bufferes)
比如你需要修改本地缓存中的一条信息,那么你必须将I(无效)状态通知到其他拥有该缓存数据的CPU缓存中,并且等待确认。等待确认的过程会阻塞处理器,这会降低处理器的性能。应为这个等待远远比一个指令的执行时间长的多。
Store Bufferes
为了避免这种CPU运算能力的浪费,Store Bufferes被引入使用。处理器把它想要写入到主存的值写到缓存,然后继续去处理其他事情。当所有失效确认(Invalidate Acknowledge)都接收到时,数据才会最终被提交。 这么做有两个风险
Store Bufferes的风险 第一、就是处理器会尝试从存储缓存(Store buffer)中读取值,但它还没有进行提交。这个的解决方案称为Store Forwarding,它使得加载的时候,如果存储缓存中存在,则进行返回。 第二、保存什么时候会完成,这个并没有任何保证。
试想一下开始执行时,CPU A保存着finished在E(独享)状态,而value并没有保存在它的缓存中。(例如,Invalid)。在这种情况下,value会比finished更迟地抛弃存储缓存。完全有可能CPU B读取finished的值为true,而value的值不等于10。
即isFinsh的赋值在value赋值之前。
这种在可识别的行为中发生的变化称为重排序(reordings)。注意,这不意味着你的指令的位置被恶意(或者好意)地更改。
它只是意味着其他的CPU会读到跟程序中写入的顺序不一样的结果。
3.4、硬件内存模型
执行失效也不是一个简单的操作,它需要处理器去处理。另外,存储缓存(Store Buffers)并不是无穷大的,所以处理器有时需要等待失效确认的返回。这两个操作都会使得性能大幅降低。为了应付这种情况,引入了失效队列。它们的约定如下:
原文连接