56所加密机
肯定没有美国大片《U-571》,告诉人们“恩尼格玛”密码机是战争中,同盟国费尽心机想要获得的尖端秘密,是战胜德国海军潜艇的关键所在。历史也确实如此,对于潜艇作战,尤其是德国海军的“狼群”战术来说,无线电通讯是潜艇在海上活动,获取信息通报情况的最重要的手段,而“恩尼格玛”密码机则是关乎整个无线电通讯安全的设备,其重要性可想而知。
自从无线电和摩尔斯电码问世后,军事通讯进入了一个崭新的时代,但是无线电通讯完全是一个开放的系统,在己方接受电文的同时,对方也可“一览无遗”,因此人类历史上伴随战争出现的密码,也就立即与无线电结合,出现了无线电密码。直到第一次世界大战结束,所有无线电密码都是使用手工编码。毫无疑问,手工编码效率极其低下,同时由于受到手工编码与解码效率的限制,使得许多复杂的保密性强的加密方法无法在实际中应用,而简单的加密方法又很容易被破译,因此在军事通讯领域,急需一种安全可靠,而又简便有效的方法。
1918年德国发明家亚瑟·谢尔比乌斯(Arthur Scherbius)和理乍得·里特(Richard Ritter)创办了一家新技术应用公司,曾经学习过电气应用的谢尔比乌斯,想利用现代化的电气技术,来取代手工编码加密方法,发明一种能够自动编码的机器。谢尔比乌斯给自己所发明的电气编码机械取名“恩尼格玛”(ENIGMA,意为哑谜),乍看是个放满了复杂而精致的元件的盒子,粗看和打字机有几分相似。可以将其简单分为三个部分:键盘、转子和显示器。
Ⅱ 加密机连打印机打印乱码
调整下打印机的输出方式~~~
不行就换个打印机,有打印机不支持专业软件
Ⅲ 加密机哪个品牌最好急急急!
加密机哪个品牌好主要还看你的用途,是金融方面,还是系统方面,还是数据方面,另外还看你需要的保密等级,银行用的和企业用的等级肯定是有区别的。安可人提醒您:选安可人设备,建数据安全网络
Ⅳ DES加密算法的破解是怎么回事
DES 被证明是可以破解的,明文+密钥=密文,这个公式只要知道任何两个,就可以推导出第三个。
凌科芯安公司专门从事加密芯片,对破解有一定的了解,如果需要了解加密芯片的详细情况,请咨询凌科芯安公司
Ⅳ 工业和信息化部发布18项网络与信息安全标准哪些股票受益
①清华紫光
清华紫光在1999年底就推出了以“网络防火墙”和“网络加密技术”为龙头的包括防火墙、交换机、集线器在内的全线网络产品。2000年3月,公司出资 6000 万元成立了控股公司清华紫光顺风信息安全有限公司,清华紫光拥有65%的股权。其后,又投资6000万元人民币与清华大学合作成立了清华紫光比威 (BITWAY)网络技术公司,公司占有60%的股份。
清华紫光顺风信息安全公司主要以“UNISMMW”密码王系列安全/防范方面的产品为主攻方向,如各种网络协议加密机、应用系统安全平台, 为现有各类通信网及通信业务提供从物理层到高层及端到端的安全设备和系统。“UNISMMW ”密码王系列产品已通过了国家密码管理委员会等相关部门的审查和批准,并在全国150多个城市使用。比威网络公司将主推以具有自主知识产权和自有技术的高端多协议安全路由器为龙头的全线网络产品, 为网络应用总体解决方案的实施提供更高层次的技术和产品支持。目前,国内厂商主要生产低端路由器,对高端产品尚无能力生产, 迄今为止,全球只有包括美国CISCO在内的少数几个国外大公司在该领域拥有完整的技术和成熟产品。
从9月份开始,清华紫光将陆续推出高档企业级信息安全产品,包括UF5000 企业级防火墙产品,网络动态扫描及攻击检测产品,公司自己的安全网站,社会各界提供安全漏洞检测防范措施、在线专家等方面的技术支持服务。清华紫光的防火墙和加密技术已经融入到公司的各类网络产品中,是上市公司中信息安全技术比较综合、完整的。
②清华同方
1997年同方与得实发展(集团)共同投资组建了中外合资企业——北京清华得实网络安全技术开发公司,该公司专业从事网络系统安全的产品开发和系统设计。注册资本60万美元,清华同方持有51%的股份。
1999年,清华同方推出了各种安全网络解决方案并自主开发了WebST、NetST网络安全系统软件,其核心操作系统达到B1级,是国内同类产品中唯一获得该安全等级的产品。其中Netst计费型防火墙V1.0、WebSTforAD3.1等三项产品获得了公安部颁发的《信息系统安全专用产品销售许可证》。另外,公司还获得世界最大的防火墙厂商CheckPoint、防黑客公司ISS和PC安全操作系统公司 SCO 的中国总代理权。 1999年清华同方在网络安全方面实现收益589万元。
③东大阿派
东大阿派的网络防火墙产品Neteye1.0于1999年5月通过公安部认证,并在政府、电信、电力、证券等部门得到了广泛的应用,拥有了辽宁联通、辽宁电信、浙江省电力局、辽宁省公安厅、华夏银行等一大批成功的案例。
2000年3月,东大阿派推出了Neteye1.0的升级版本Neteye2.0, 通过了公安部计算机信息系统安全产品上海质量监督检测中心测试,并获得公安部下发的销售许可证。该产品是东大阿尔派跟踪国内外最新防火墙技术,针对我国具体应用环境开发出的网络防火墙产品。不仅具有较强的信息分析、全面访问控制、实时监控、安全审计、高效包过滤等功能,而且具有多种反电子欺骗手段、透明应用代理,双机热备等多种安全措施,非常适合我国政府和企事业单位使用。
东大阿派从未披露过其防火墙的销售额,我们估计累计销售额应在一千万元以下。
④华源发展
2000年1月,公司以增资方式投资612万元控股上海华依科技发展有限公司,从而介入了网络安全产品领域。
上海华依科技公司是一家由三位自然人出资创办的专业从事网络安全技术开发和服务的民营科技公司。华源发展进入华依科技之后,将依托德国BIODATA 公司强大的技术支持,开发生产“防火墙”、链路加密、VPN等网络安全系列产品,项目投资总额为5000万元。其中防火墙产品已经获得国家公安部颁发的许可证, 加密部分均采用国家公安部、中国密码委员会批准认可的专用核心模块。这三类产品几乎覆盖了从局域网到广域网、虚拟网的各种计算机网络所需的安全要求。华依科技还在上海信息城建立了唯一的专业网络安全实验室——华依BIODATA 网络安全实验室,成为上海信息产业七大实验室之一。
公司2000年中报未对华依科技公司的经营情况进行任何描述,可以推测目前公司的销售规模不是很大。
⑤海信电器
上半年海信电器自行设计、自主开发成功FW3010AG(8341)防火墙,并于2000年 4月顺利地通过公安部计算机信息系统安全产品质量监督检验中心的安全测试, 获得“安全专用产品销售许可证”。海信防火墙是一种应用代理型防火墙,它综合了包过滤和应用代理系统的特点。它利用源代码公开的Linux 操作系统和各种最新的技术方法,弥补了前代防火墙的种种缺陷和隐患。海信计划在2000年内,“8341防火墙”要成为国内网络安全市场的知名品牌,到 2003年争取占有国内市场份额的30 %以上。海信防火墙产品价格只有国外产品的三分之一左右,具有明显竞争优势。
另外,海信电器将运用配股资金5320万元用于Internet网络安全设备(防火墙) 生产改造。 公司将在吸收国际先进防火墙产品的基础上, 自主开发设计的基于 Linux和Internet基础的防火墙,并形成批量生产能力。
⑥实达电脑
实达电脑从事防火墙生产的是其控股的北京实达朗新信息科技有限公司。该公司的产品是朗新NetShine防火墙Ver1.0。此产品仅仅是实达电脑长长的产品线中的一小部分,对实达电脑的影响不大。
(2)加密产品生产
从事加密产品生产的有远东股份、上海港机、青鸟天桥、天宸股份等。
①远东股份
2000年3月,公司与中国科学院所属信息安全国家重点实验室(又名中国科学院数据通信安全中心)共同组建北京远东网络安全研究院, 并在常州设立网络安全产品软硬件生产基地,主要产品为信息安全国家重点实验室开发的网络反击黑客软件系统等系列信息安全产品。公司将用配股资金 3747.69万元投入,持有研究院80 %的股份,项目建设期为2年。 信息安全国家重点实验室是目前我国从事信息安全的唯一国家级实验室,代表了我国信息和网络安全技术的最高水平,将能为公司提供高水平的安全技术。该研究院已经推出具有自主知识产权的“RealAlert 网络入侵检测系统”、“CA证书系统”、“加密卡”、“安全虚拟子网系统软件包VPN ”等网络安全产品。但是这些产品还处于市场调研论证、开发等前期阶段,未能大批量生产。
为了更好将网络安全技术产业化,公司还拟投资6347.53 万元在常州高新技术产业开发区增设网络安全系统产品的生产销售基地,使之与北京远东网络安全研究院配套,形成网络信息安全产品的研制开发、生产销售系列。
远东股份还积极展开与网络安全领域国际着名企业的战略合作, 包括在亚洲独家代理Axent公司网络安全产品, 该公司防入侵网络安全产品在全球市场的占有率排名第一;代理Network Associant防病毒类网络安全产品, 该公司在这一领域的产品全球市场占有率均在60%以上;与全球最大的网络安全产品供应商Cheak Point 初步达成合作意向。
就目前形势看,网络安全系统产品已经成为了公司在高科技领域投资的的主导产品,而且技术和资金优势明显,有实力占据我国信息安全产品领域的领头地位。
②上海港机
2000年8月公司投资1000万元参股上海金诺网络安全技术发展有限公司, 占其注册资本4986万元的20.06%。金诺公司主要从事网络信息安全产品的开发、生产、销售和提供专业信息安全服务,被选为国家863 计划信息安全领域专项课题研究承担单位,同时被列入上海市信息产业重点企业,并已获得中国国家信息安全测评认证中心的认证和公安部公共信息网络安全监察局颁发的信息安全产品生产、销售许可证。
该公司主要产品有金诺入侵检测系统、金诺证券安全审计系统、金诺企业安全审计系统、金诺网络安全计费系统、金诺SSL等, 并为一些大型网络提供了安全全套解决方案和专业安全服务。金诺公司已和爱建证券、兴业证券、鞍山证券、江苏维维股份公司等单位签定了网络安全改造工程和企业VPN 专网总体设计及建设总包合同。
此外,金诺公司和上海华东理工大学合作建立了金诺网络安全研究中心,并和国内信息安全领域最大的研究机构信息产业第30研究所、公安部第三研究所及总参第56研究所签定了战略同盟协议,还与全球最大的网络安全产品供应商NAL 签定了汉化代理协议。
由于公司公布该投资计划时其股价已经上涨了3倍, 因此该信息近期可能是公司配合庄家出货的所公布的利好。从长期看,金诺公司发展情景可看好,特别是近期科技部和公安部、国家安全部在全国设立了两个信息化安全产品基地,一个就是上海。金诺公司在上海基地中主力军,将投资参与上海基地的建设开发。对上海港机而言,如果仅仅做为一个投资,近几年金诺对公司的利润贡献不会太大。
③青鸟天桥
1999年9月,青鸟天桥投资1110 万元成立了北京北大青鸟顺风网络安全有限公司,青鸟天桥拥有64.9%的股份。该公司主要从事信息安全产品、商品密码产品、安全防范产品等的研制、生产、工程实施和销售。2000年8月,公司参股7.98 %的青鸟环宇公司与全球着名的网络安全厂商NAI公司签署了合作协议, 结成战略合作伙伴关系,共同为中国用户提供全面的网络安全解决方案。
青鸟天桥仅仅在1999年年报中披露过其JB-COMM 安全信息平台获得国家级火炬计划项目证书,并形成了批量销售。但是总体上讲,其信息安全产品主要有其子公司青鸟环宇研制开发,不是青鸟天桥本身的发展重点。
④天宸股份
1999年5月,天宸股份与深圳市海基业高科技实业有限公司、 上海信业投资管理有限公司联合发起成立了上海海基业高科技有限公司。 公司注册资金为人民币 1000万元,总投资额将达到6000万元(分批实施2000年6月30日前到位)。 天宸股份拥有该公司60%的股份。
该公司发起人之一的深圳市海基业高科技有限公司是由我国着名密码学家、中国密码学会副理事长、国家信息安全委员会主任委员肖国镇教授出任公司总工程师,在其主持下研究开发了具有自主知识版权的信息加密算法及网络支付密码系统,已通过了国家密码委员会主持的鉴定。该网络支付密码系统已在银行系统的多次招标中中标,使公司在信息安全方面居于国内领先地位。海基业公司已被中国银行总行和农业银行总行选定为支付密码系统定点供应商。
2000年6月,由于天宸控股但无法实现对“海基业”的有效管理, 而且该公司已累计亏损1624347元,天宸股份决定撤回对海基业公司投资,公司投资损失97 万元。
Ⅵ 56所加密机连接密管分中心失败
摘要 1、首先判断你们局域网是不是域管理的,如果不是,就要把客户端的WIN登录名称和密码在服务器的用户里面登记
Ⅶ 什么叫多字母加密
多字母顺序加密的这种算法的每个字母的后推位次并不相同,假如D代替了A ,并不一定是E取代B。在第二次世界大战中名声大震的Enigma自动加密机,也基于这个原理工作。
相对而言:
罗马的将军们用字母后推3位的方法加密往来的信函。比如,用D来代替A,E代替B,以此类推。这个单一字母顺序加密法,直到九世纪才被阿拉伯的学者通过不断的分析破解。
http://www.chip.cn/index.php?option=com_content&view=article&id=3040:2010-09-01-07-23-41&catid=5:news-remarks&Itemid=13
时间之旅:天书奇谭-加密篇
导言:每个人都在问这个问题:你能保密码?2500年来,统治者、保密机构和密码破译家一直寻找着答案。
一直以来,加密技术都应用于政治领域。现如今,每个人在网上冲浪、收发email或者使用网上银行的时候,都要用到加密算法。加密能避免“窃听”事件的发生,如果没有加密算法,互联网或许不会是今天这个样子。
现代数据加密算法的原理仍基于罗马帝国的凯撒与他的将军们联系所使用的加密方法,它的原理基于凯撒时代的字母表。罗马的将军们用字母后推3位的方法加密往来的信函。比如,用D来代替A,E代替B,以此类推。这个单一字母顺序加密法,直到九世纪才被阿拉伯的学者通过不断的分析破解。然而,法国人Blaise de Vigenère的多字母顺序加密就不那么容易破解了,这种算法的每个字母的后推位次并不相同,假如D代替了A ,并不一定是E取代B。在第二次世界大战中名声大震的Enigma自动加密机,也基于这个原理工作。
计算机时代的到来,使得这一切都发生了改变。伴随着不断上升的处理能力,算法变得越来越复杂,“攻击”也变得越来越高效。此后,密码破译家便遵循Kerckhoffs原则,一个密码系统应该是安全的,即使该系统的一切,除了密钥,都可以作为公共知识。这种“开源”理念的好处是,任何人都可以试验这种加密算法的优劣。
用于科学研究目的的攻击是可取的。如果攻击是成功的,一个更好的算法便有了用武之地。在1998年,数据加密标准(DES)的命运便是如此,它曾是美国当局首选的加密方法。密钥的长度只有短短的56位,如果使用强力攻击,很快便可破解。
DES 的继任者从竞争中胜出,Rijndael算法赢得了最后的胜利。美国国家标准技术研究所(NIST)选择Rijndael作为美国政府加密标准(AES)的加密算法,该算法使用128位密钥,适用WLAN,能够胜任蓝光加密。然而,这么经典的对称算法对于网络通讯还是不够安全。发送者和接收者使用相同的密钥加密和解密。任何人都可以截获密钥,因为它并未加密。
发明于上世纪70年代的非对称加密法帮助解决了这个问题。接收者生成公共密钥和私人密钥两个部分,他将公共密钥发送给那些需要向他发送加密信息的人。公共密钥可以加密文件,但是这些文件需要私人密钥才能解码。这一算法的缺点是:密钥对需要两组大的原始数字生成,非常耗时。对网络银行等个人业务,对称法和非对称法组合使用的方法是有效的。信息部分使用对称法加密,但密钥应采用非对称法加密。
当量子电脑有足够的能力使用强力攻击破解128位的密钥的时候,非对称加密法就不安全了。量子密码学利用物理学原理保护信息,以量子为信息载体,经由量子信道传送,在合法用户之间建立共享的密钥,它的安全性由“海森堡测不准原理”及“单量子不可复制定理”保证。
加密史
400v.Chr. Skytale(天书)
时间之旅:天书奇谭-加密篇
Skytale 就是一种加密用的、具有一定粗细的棍棒或权杖。斯巴达人把重要的信息缠绕在Skytale上的皮革或羊皮纸之后,再把皮革或羊皮纸解下来,这样就能有效地打乱字母顺序。只有把皮(纸)带再一点点卷回与原来加密的Skytale同样粗细的棍棒上后,文字信息逐圈并列在棍棒的表面,才能还原出本来的意思。
50v.Chr. 凯撒密码
时间之旅:天书奇谭-加密篇
罗马的统治者将字母后推3个位次加密,这就是今天广为人知的单一字母加密法。
1360 Alphabetum Kaldeorum
时间之旅:天书奇谭-加密篇
奥地利的Rudolf 四世发明了中世纪最受欢迎的加密法,他甚至在墓碑上也使用它。
1467 加密碟
时间之旅:天书奇谭-加密篇
这个工具使得单一字母加密法的字母取代简单化。
1585 维热纳尔密码(Vigenère)
法国外交家Blaise de Vigenère发明了一种方法来对同一条信息中的不同字母用不同的密码进行加密,这种多字母加密法在诞生后300年内都没能被破解。
1854 Charles Babbage
时间之旅:天书奇谭-加密篇
计算机的发明者,据说是他第一个破解了维热纳尔代码,人们在检查他的遗物时发现了这一破解方法。
1881 Kerkhoff原则
时间之旅:天书奇谭-加密篇
这以后,加密算法的安全性不再取决于算法的保密,而是密钥的保密。
1918 Enigma和一次性密钥
时间之旅:天书奇谭-加密篇
Enigma是着名的德国加密机,为每个字母生成取代位次。在很长的一段时间内,都被认为是无法破解的。
一次性密钥在数学上是安全的:使用编码手册,为每个文本使用不用的加密方式——在冷战时期,间谍常使用此工具。
1940 Tuning-Bombe
时间之旅:天书奇谭-加密篇
这个机器由Alan Turking 发明,用于破解Enigma加密机。它包含了多个相互配合使用的Enigma设备。
1965 Fialka
时间之旅:天书奇谭-加密篇
东欧的“Enigma”,一直使用到柏林墙倒塌。自1967起被为认为不再安全。
1973 公共密钥
英国智囊机构的3个军官首先开发了非对称加密。直到1997年才被揭秘。
1976 DES
时间之旅:天书奇谭-加密篇
IBM与NASA合作,为美国官方开发了数据加密标准。然而,评论家发现了将密钥长度从128位降低到56位这一该算法的瑕疵。
1977 RSA
时间之旅:天书奇谭-加密篇
Rivest、Shamir 和Adelman三人发明了可靠的非对称加密法。目前,它主要用于邮件加密和数字签名等场合。
1998 深度破解
时间之旅:天书奇谭-加密篇
电子国界基金会有一台拥有1800个处理器的计算机,它通过蛮力破解了DES加密法。
2000 AES
时间之旅:天书奇谭-加密篇
DES的继任者,Rijndael算法在公开竞争中取胜。高级加密标准是最为广泛应用的对称加密手段。
2008 量子密码网络 DES
使用量子密码保护的光纤网络在维也纳首次展示。
2030未来趋势:量子计算机
时间之旅:天书奇谭-加密篇
量子计算机工作如此之快,能够破解先前的所有加密算法。只有量子密码学才能保护信息免于被破解。
Ⅷ 恩尼格玛密码机的弱点
在一次大战其间,英国的情报机关非常严密地监控了德国方面的通讯,丘吉尔的书和英国海军部的报告中透露的消息只不过是一鳞半爪。事实上,将美国引入一次大战的齐末曼(Arthur Zimmermann,1916年起任德国外交部长)电报就是由着名的英国40局破译的。在此电报中德国密谋墨西哥对美国发动攻击,这使得美国最终决定对德宣战。但是英国人的障眼法用得如此之好,使得德国人一直以为是墨西哥方面泄漏了秘密。
战后英国仍旧保持着对德国通讯的监听,并保持着很高的破译率。但是从1926年开始,他们开始收到一些不知所云的信息——ENIGMA开始投入使用。德国方面使用的ENIGMA越多,40局破解不了的电文就越多。美国人和法国人碰到的情况也一样,他们对ENIGMA一筹莫展。德国从此拥有了世界上最为可靠的通讯保密系统。
一次大战的战胜国很快就放弃了破译这种新型密码的努力。也许是出于自信,在他们看来,在凡尔赛条约约束下的德国已经造成不了什么危害。由于看不到破译德国密码的必要性,盟国的密码分析专家懒散下来,干这一行的头脑似乎也变得越来越平庸。在科学的其他领域,我们说失败乃成功之母;而在密码分析领域,我们则应该说恐惧乃成功之母。普法战争造就了法国一代优秀的密码分析专家,而一次大战中英国能够破译德国的通讯密码,对失败的极大恐惧产生的动力无疑起了巨大的作用。
历史又一次重演。因为在欧洲有一个国家对德国抱有这种极大的恐惧——这就是在一战灰烬中浴火重生的新独立的波兰。在她的西面,是对失去旧日领土耿耿于怀的德国,而在东面,则是要输出革命的苏维埃联盟。对于波兰来说,关于这两个强邻的情报是有关生死存亡的大事,波兰的密码分析专家不可能象他们的英美法同事那样爱干不干——他们必须知道这两个大国都在想什么。在此情况下波兰设立了自己的破译机构,波军总参二局密码处(Biuro Szyfrow)。密码处的高效率在1919-1920年波苏战争中明显地体现出来,军事上屡尝败绩的波兰在密码分析方面却一枝独秀。在苏军兵临华沙城下的情况下,1920年一年他们破译了大约400条苏军信息。在对西面德国的通讯的监控方面,波兰人也保持了同样的高效率——直到1926年ENIGMA登场。
波兰人想方设法搞到了一台商用的ENIGMA机器,大致弄清楚了它的工作原理。但是军用型的转子内部布线和商用型的完全不同,没有这个情报,想要破译德军的电报可谓难如登天。波兰人使出了浑身的解数,甚至病急乱投医,请了个据说有天眼通功能的“大师”来遥感德国人机器里转子的线路图——当然和所有的“大师”一样,一遇上这种硬碰硬的事情,神乎其神的天眼通也不灵了。
这时事情有了转机。
汉斯-提罗·施密特(Hans-Thilo Schimdt)于1888年出生在柏林的一个中产阶级家庭里,一次大战时当过兵打过仗。根据凡尔赛条约,战败后的德国进行了裁军,施密特就在被裁之列。退了伍后他开了个小肥皂厂,心想下海从商赚点钱。结果战后的经济萧条和通货膨胀让他破了产。此时他不名一文,却还有一个家要养。
和他潦倒的处境相反,他的大哥鲁道夫(Rudolph)在战后春风得意。和汉斯-提罗一样都是一次大战的老兵,可鲁道夫没有被裁减,相反却一路高升。到了二十年代,他当上了德国通讯部门的头头,就是他正式命令在军队中使用ENIGMA。和大哥的成功比起来,汉斯-提罗自然觉得脸上无光。
可是破产后汉斯-提罗不得不放下自尊心来去见大哥,求他在政府部门替自己谋个职位。鲁道夫给他的二弟在密码处(Chiffrierstelle)找了个位置。这是专门负责德国密码通讯的机构——ENIGMA的指挥中心,拥有大量绝密情报。汉斯-提罗把一家留在巴伐利亚,因为在那里生活费用相对较低,勉强可以度日。就这样他一个人孤零零地搬到了柏林,拿着可怜的薪水,对大哥又羡又妒,对抛弃他的社会深恶痛绝。
接下来的事情可想而知。如果把自己可以轻松搞到的绝密情报出卖给外国情报机构,一方面可以赚取不少自己紧缺的钱,一方面可以以此报复这个抛弃了他的国家。1931年11月8日,施密特化名为艾斯克(Asche)和法国情报人员在比利时接头,在旅馆里他向法国情报人员提供了两份珍贵的有关ENIGMA操作和转子内部线路的资料,得到一万马克。靠这两份资料,盟国就完全可以复制出一台军用的ENIGMA机。
不过事情并不象想象的那么简单。要破译ENIGMA密码,靠这些情报还远远不够。德军的一份对ENIGMA的评估写道:“即使敌人获取了一台同样的机器,它仍旧能够保证其加密系统的保密性。”就算有了一台ENIGMA,如果不知道密钥(就是转子自身的初始方向,转子之间的相互位置,以及连接板连线的状况)的话,想破译电文,就要尝试数以亿亿计的组合,这是不现实的。
“加密系统的保密性只应建立在对密钥的保密上,不应该取决于加密算法的保密。”这是密码学中的金科玉律。加密算法可以直接是某个抽象的数学算法,比如通用的DEA和RSA算法,也可以是实现某个算法的象ENIGMA这样的加密机械或专门用于加密的电子芯片等加密器件,还可以是经过编译的在计算机上可执行的加密程序,比如在互联网通信中被广泛使用的PGP(Pretty Good Privacy)。因为对加密算法的保密是困难的。对手可以用窃取、购买的方法来取得算法、加密器件或者程序。如果得到的是加密器件或者程序,可以对它们进行反向工程而最终获得加密算法。如果只是密钥失密,那么失密的只是和此密钥有关的情报,日后通讯的保密性可以通过更换密钥来补救;但如果是加密算法失密,而整个系统的保密性又建立在算法的秘密性上,那么所有由此算法加密的信息就会全部暴露。更糟糕是,为了使以后的通讯保持秘密,必须完全更换加密算法,这意味着更新加密器械或更换程序。比起简单地更换密钥,这要耗费大量财富和管理资源(大规模更换加密器械和程序会使对手更有机会乘虚而入!)。
正如前面所言,ENIGMA的设计使得搞到了它的秘密的法国人也一筹莫展。法国密码分析人员断定这种密码是不可破译的。他们甚至根本就懒得根据搞到的情报去复制一台ENIGMA。
在法国和波兰签订过一个军事合作协议。波兰方面一直坚持要取得所有关于ENIGMA的情报。既然看来自己拿着也没什么用,法国人就把从施密特那里买来的情报交给了波兰人。和法国人不同,破译ENIGMA对波兰来说至关重要,就算死马也要当作活马医。现在他们总算能迈出最初的一步了。
在施密特提供的关于ENIGMA的情报中,不仅有关于ENIGMA构造和转子内部连线的描述,还有德国人使用ENIGMA进行编码的具体规定。每个月每台ENIGMA机的操作员都会收到一本当月的新密钥,上面有此月每天使用的密钥。比如说,第一天的密钥可以是这个样子:1.连接板的连接:A/L-P/R-T/D-B/W-K/F-O/Y。2.转子的顺序:2,3,1;转子的初始方向:Q-C-W。
当操作员要发送某条消息时,他首先从密钥本中查到以上信息。然后按照上面的规定,首先用连线把连接板上的A字母和L字母,P字母和R字母……连接起来;然后把2号转子放在ENIGMA的第一个转子位置上,把3号转子放在第二个位置上,把1号转子放在第三个位置上;最后,他调整转子的方向(从照片上可以看到每个转子的边上都刻着一圈字母用来显示转子所处的方向),使得三个转子上的字母Q、C和W分别朝上。在接收信息的另一方,操作员也进行同样的准备(他也有一本同样的密钥本),就可以进行收信解码的工作了。
调整好ENIGMA,操作员可以开始对明文加密了。但是我们看到每天只有一个密钥,如果这一天的几百封电报都以这个密钥加密发送的话,暗中截听信号的敌方就会取得大量的以同一密钥加密的信息,这对保密工作来说不是个好兆头。我们记得在简单替换密码的情况下,如果密码分析专家能得到大量的密文,就可以使用统计方法将其破解。
尽管不知道对ENIGMA是否可以采用类似的统计方法,德国人还是留了个心眼。他们决定在按当日密钥调整好ENIGMA机后并不直接加密要发送的明文。相反地,首先发送的是一个新的密钥。连接板的连线顺序和转子的顺序并不改变,和当日通用的密钥相同;想反地,转子的初始方向将被改变。操作员首先按照上面所说的方法按当日密钥调整好ENIGMA,然后随机地选择三个字母,比如说PGH。他把PGH在键盘上连打两遍,加密为比如说KIVBJE(注意到两次PGH被加密为不同的形式,第一次KIV,第二次BJE,这正是ENIGMA的特点,它是一种复式替换密码)。然后他把KIVBJE记在电文的最前面。接着他重新调整三个转子的初始方向到PGH,然后才正式对明文加密。
用这种方法每一条电文都有属于自己的三个表示转子初始方向的密钥。把密钥输入两遍是为了防止偶然的发报或者接收错误,起着纠错的作用。收报一方在按当日密钥调整好ENIGMA机后,先输入密文的头六个字母KIVBJE,解密得到PGHPGH,于是确认没有错误。然后把三个转子的初始方向调整到PGH,接着就可以正式解密其余的密文了。
如果不使用对每条电文都不同的密钥,那么每天很可能总共会有几千条电文也就是几百万个字母的消息以同一个密钥加密。而采用每条电文都有自己的密钥这个方法后,当日密钥所加密的就是很少的几万个字母,而且这些字母都是随机选取,和有意义的电文性质不同,不可能用统计方法破译。
乍一看来这种方法无懈可击。可是波兰人铁了心,必须在这厚厚的护甲上撕出一个口子来。
在此以前,密码分析人员通常是语言天才,精通对语言方面特征的分析。但是既然ENIGMA是一种机械加密装置,波兰总参二局密码处就考虑到,是否一个具有科学头脑的人更适合于它的破译工作呢?
1929年1月,波兹南大学数学系主任兹德齐斯罗·克里格罗夫斯基(Zdzislaw Krygowski)教授开列了一张系里最优秀的数学家的名单,在这张名单上,有以后被称为密码研究“波兰三杰”的马里安·雷杰夫斯基(Marian Rejewski),杰尔兹·罗佐基(Jerzy Rozycki)和亨里克·佐加尔斯基(Henryk Zygalski)。波兹南大学并非当时波兰最有名的大学,但是它地处波兰南部,那里直到1918年还是德国领土,所以所有这些数学家都能讲流利的德语。
在三位被密码局招聘的数学家中,雷杰夫斯基的表现最为出色。当年他是个架着一副近视眼镜,脸上略带羞色的二十三岁小伙子。他的在大学里学的专业是统计学,打算以后去干保险业行当,也许在此之前他从未想到会在密码分析方面大展身手。在经过短期的密码分析训练后,他把所有的精力都投入到破解ENIGMA的工作中去。
雷杰夫斯基深知“重复乃密码大敌”。在ENIGMA密码中,最明显的重复莫过于每条电文最开始的那六个字母——它由三个字母的密钥重复两次加密而成。德国人没有想到这里会是看似固若金汤的ENIGMA防线的弱点。
德方每封密文最开始的六个字母,是此信密钥的三个字母重复两遍,由当日密钥加密而成。比如说这封信的密钥是ULJ(这是开始加密明文时由操作员临时随机选取的),那么操作员首先用当日通用的密钥加密ULJULJ,得到六个字母的加密后序列,比如说PEFNWZ,然后再用ULJ来作为密钥加密正文,最后把PEFNWZ放在加密后的正文前,一起用电报发给收信方。
雷杰夫斯基每天都会收到一大堆截获的德国电报,所以一天中可以得到许多这样的六个字母串,它们都由同一个当日密钥加密而成。比如说他收到四个电报,其中每封电报的开头的六个字母为:第一封电报:L O K R G M;第二封电报:M V T X Z E;第三封电报:J K T M P E;第四封电报:D V Y P Z X。对于每封电报来说,它的第一个字母和第四个字母都是由同一个字母加密而来,同样地第二和第五个字母以及第三和第六个字母也是分别由同一个字母加密而来。比如说在第一封电报中,字母L和R是由同一字母加密而来。这个字母之所以先被加密成L,然后又被加密成了R,是因为在此期间转子向前转动了三个字母的位置。
从L和R是由同一个字母加密而来这点,雷杰夫斯基就有了判断转子的初始位置的一条线索。当转子处于这个初始位置时,字母L和R在某种意义下具有紧密的联系。每天截获的大量电文能够给出许多这样的紧密联系,从而使雷杰夫斯基最终能够判断出转子的初始位置。在上面的第二、三、四封电报中,我们看见M和X,J和M,D和P都有这种联系:
第四个字母:___P_____M_RX_____________
如果雷杰夫斯基每天可以得到充分多的电报,他就可以把上面这个关系表补充完整:
第四个字母:FQHPLWOGBMVRXUYCZITNJEASDK
光凭这个对应表格,雷杰夫斯基还是没办法知道当天的通用密钥。可是他知道,这个表格是由当天的通用密钥决定的,而且只由它决定。如果密钥不同,那么这个表格也应该不同——那么,有没有一种办法可以从这个对应表来推断出当日的通用密钥呢?雷杰夫斯基对这样的表格进行了仔细观察。从字母A开始看,它被对应成F;而F在此表中又被对应成W,接下去它被对应成A,我们又回到了最先开始的字母,于是就有了一个循环的字母圈A→F→W→A。如果考虑所有的字母,雷杰夫斯基就能写出关于此对应表的所有的循环圈:A→F→W→A。
3个字母的循环圈B→Q→Z→K→V→E→L→R→I→B;9个字母的循环圈C→H→G→O→Y→D→P→C;7个字母的循环圈J→M→X→S→T→N→U→J。
7个字母的循环圈这里我们只是考虑了第一和第四个字母形成的对应表。同样地对第二和第五、第三和第六个字母形成的对应表,我们也可以写出类似的字母循环圈。由于每天的密钥都不同,雷杰夫斯基得到的循环圈也各不相同。
雷杰夫斯基观察到,这些循环圈长短不一。这使他有了一个重要的灵感:虽然这些循环圈是由当日密钥,也就是转子的位置,它们的初始方向以及连接板上字母置换造成的,但是每组循环圈的个数和每个循环圈的长度,却仅仅是由转子的位置和它们的初始方向决定的,和连接板上字母交换的情况无关!
假定在上面这个例子中,原来在接线板上字母S和G由一根连线相连。转子的位置和它们的初始方向保持不变,去掉这根连线而将字母T和K连在一起,那么第一和第四个字母的对应表就会变成:
第一个字母:ABCDEFGHIJKLMNOPQRSTUVWXYZ,第四个字母:FQHPLWKSBMNRXUYCZIOVJEAGDT(原来的G对应O,S对应T,去掉G和S的连线后,G就对应T,但是T被新的连线接到了K,所以G最终对应着K。其他受影响的字母还有H、K、S、T、X、Z)。而循环圈表就变成了:A→F→W→A。
3个字母的循环圈B→Q→Z→T→V→E→L→R→I→B;9个字母的循环圈C→H→S→O→Y→D→P→C;7个字母的循环圈J→M→X→G→K→N→U→J。
7个字母的循环圈某些循环圈中的字母变了,但是循环圈的数目仍旧是四个,每个循环圈的长度也没有改变。应用置换变换的理论,雷杰夫斯基可以从数学上严格证明这一点对于任何的连线变化都是成立的。
这是一个非常重大的进展。我们知道,如果要强行试遍所有的密钥来破解密文,那得要试一亿亿个密钥之多;但是ENIGMA的数量巨大的密钥主要是由连接板来提供的,如果只考虑转子的位置和它们的初始方向,只有105456种可能性。虽然这还是一个很大的数字,但是把所有的可能性都试验一遍,已经是一件可以做到的事情了。
波兰人按照汉斯-提罗·施密特提供的情报复制出了ENIGMA样机。到了1934年,他们有了十几台波兰造ENIGMA。雷杰夫斯基和他的同事们每天都在ENIGMA前工作,一个接一个地试验转子的不同位置和初始方向,然后产生相应的字母对应表并构造相应的字母循环圈,并把它们记录下来。比如说其中的一个记录可以是这样的:第一和第四字母对应表中有4个循环圈,长度分别为3,9,7,7;
第二和第五字母对应表中有4个循环圈,长度分别为2,3,9,12;
第三和第六字母对应表中有5个循环圈,长度分别为5,5,5,3,8;
当对所有105456种转子位置和初始方向都编好记录以后,破译ENIGMA生成的密文就比较容易了。首先要取得足够的当日电文来构造字母对应表并且写出字母循环圈;然后根据循环圈的数目和它们的长度从记录表中检索出相对应的转子位置和初始方向:这就是当日的密钥(连接板的情况还未知)。循环圈的个数和长度可以看作是这个密钥的“指纹”——通过建立密钥“指纹”档案,雷杰夫斯基就能及时地把当天的密钥找出来。通过分离转子的状态和连接板的状态,雷杰夫斯基大大简化了破译ENIGMA的工作。建立这样一个档案花了整整一年时间,工作相当艰苦,有时工作人员的手指都被磨出血来。
必须指出的是,上面对雷杰夫斯基的工作的介绍是极其简单化的,只以举例的形式介绍了其中最重要的思路。雷杰夫斯基对于ENIGMA的分析是在密码分析史上最重要的成就之一,整个工作都是严格地数学化了的(求解关于置换矩阵的方程),决非上面所举例子可以包含。比如说,找到当日密钥中转子状态后,还需要找到连接板状态,才能真正译出密文。另外,ENIGMA中转子中的线路并非总是固定不变,雷杰夫斯基的理论允许从密文和密钥倒推出转子内部的连线状态。即便是施密特提供的情报也未明确指出转子内部的连线状态,雷杰夫斯基一项重要工作就是成功地判断出军用型ENIGMA的转子上字母以字母表顺序排列,而不是如商用型那样,字母以键盘上的顺序排列。另外还要指出的是,雷杰夫斯基的同事,尤其是另两位数学家罗佐基和佐加尔斯基在破译工作中也作出了很重要的贡献。佐加尔斯基还设计了用在纸上钻孔的方法来迅速查询对应于某类字母循环圈的转子状态的方法。
在雷杰夫斯基和他的同事的努力下,波兰情报部门在后来的几年里成功地掌握了大量德国方面的情报。据估计,在1933年1月到1939年9月这六年多的时间里,波兰方面一共破译了近十万条德方的消息,其中最重要的有德国在包括苏台德地区兵力重新部署的情报,这对波兰的安全是极大的威胁。对ENIGMA的破解即便在总参二局领导层内部也属最高机密,军官们会收到标有“维奇尔”(Wicher,破译ENIGMA行动的代号)的情报,他们被告知这些情报绝对可靠,但来源绝密。1934年,纳粹德国元帅赫尔曼·戈林访问华沙,他怎么也没有怀疑波兰人已经掌握了他的机密。当他和德国高级官员向位处波兰密码处附近的无名战士墓献花圈时,雷杰夫斯基正透过办公室的窗子望着他们,心中为自己能知道他们最机密的通讯而狂喜不已。
当德国人对ENIGMA转子连线作出一点改动以后,花了一年功夫建立起来的密钥“指纹”档案就变得毫无用处了。但是雷杰夫斯基和罗佐基有了一个更好的主意。他们在ENIGMA的基础上设计了一台能自动验证所有26*26*26=17576个转子方向的机器,为了同时试验三个转子的所有可能位置的排列,就需要6台同样的机器(这样就可以试遍所有的17576*6=105456种转子位置和初始方向)。所有这6台ENIGMA和为使它们协作的其他器材组成了一整个大约一米高的机器,能在两小时内找出当日密钥。罗佐基把它取名为“炸弹”(La Bomba),可能是因为它运转起来震耳欲聋的声响;不过也有人传说,制造这样一台机器的主意是雷杰夫斯基一次在饭店里吃叫做“炸弹”的冰淇淋时想到的。无论如何,“炸弹”实现了密码分析机械化,它是对ENIGMA机械加密的一种很自然的回应手段。
30年代的大部分日子里,雷杰夫斯基和他的同事们不断地从事着寻找密钥的工作,时不时地还要修复出了故障的“炸弹”。他们不知道的是,在密码处处长格维多·兰杰(Gwido Langer)少校的抽屉里,已经有了他们正在绞尽脑汁试图寻找的东西。
事实上,在提供了两份极其重要的关于ENIGMA的情报后,汉斯-提罗·施密特还在继续向法国情报机关提供关于德国通讯的情报。在1931年后的七年中,他和法国情报人员接头二十次,每次都提供若干德国通讯用密码本,上面记载着一个月中每天使用的当日密钥。汉斯-提罗·施密特总共提供了三十八个月的密码。兰杰少校通过法国密码处(“第二处”)负责人居斯塔夫·贝特朗(Guistav Bertrand)上尉得到了这些密码本。如果雷杰夫斯基能够预先知道这些密码,无疑可以节省大量的时间,从而进行其他的同样十分重要的破译工作。
但是兰杰少校觉得雷杰夫斯基的小组应该习惯于单独工作,以便在将来得不到密码本的时候,也能同样破译ENIGMA。我们的确不知道,如果自1931年来没有这样的压力,雷杰夫斯基是否能够有上面所述的重要工作。
波兰密码局的破译能力在1938年的十二月达到了极限,德国人加强了ENIGMA的加密能力。每台ENIGMA机增加了两个可供选择的转子。原来三个转子不同的排列方式有6种,从五个转子中选取三个装入机器中的方式达到了5*4*3=60种。这就意味着要达到原来的效率,“炸弹”中必须有60台机器同时运转,而不是原来的6台。建造这样一台“炸弹”的价格是密码处总预算的十五倍!在1939年一月,连接板上的连线又由六根增加到十根,这样就只剩6个字母不会被交换。密钥的总数达到了一万五千九百亿亿个,是原来的一万五千九百倍。
虽然波兰数学家们成功地推断出了第四和第五个转子中的连线状态,雷杰夫斯基也证明了ENIGMA并非象德国人或盟国密码分析专家想象的那样坚不可破,但是他的方法终于也不适用了。这时兰杰少校应该从他的抽屉里拿出施密特提供的密码本来——但是正是德国人增加转子个数的时候,施密特停止了和法国情报部门的接头。七年中施密特不断地提供给波兰人能靠自己的力量破译的密钥,波兰人急需这些密钥,他们却再也搞不到了。
这对波兰是一个致命的打击。因为ENIGMA不仅仅是德国秘密通讯的手段,更是希特勒“闪电战”(blitzkrieg)的关键。所谓的“闪电战”是一种大规模快速协同作战,各装甲部队之间,它们和步兵、炮兵之间必须能够快速而保密地进行联系。不仅如此,地面部队的进攻还必须由斯图卡轰炸机群掩护支援,它们之间也必须有可靠的联络手段。闪电战的力量在于:在快速的通讯保证下的快速进攻。
如果波兰不能知道德军的通讯,那么想要抵挡德国的入侵是毫无希望的,现在看来这在几个月里就会发生。1939年4月27日德国撕毁同波兰签订的互不侵犯条约,侵占了苏台德地区;在德国国内,反波兰的声浪不断高涨。在此情况下,兰杰少校决定把直到现在还对盟国保密的关于ENIGMA的破译方法告诉盟国同行,以便在波兰遭到入侵后,拥有更大人力物力财力的盟国还可以继续对雷杰夫斯基的方法进行研究。
兰杰少校致电他的英国和法国同行,邀请他们来华沙紧急讨论有关ENIGMA的事项。英法密码分析专家到达波兰密码处总部,全然不知波兰人葫芦里卖的什么药。具有讽刺意味的是,这次会面中用来交流使用的语言是……德语——这是唯一的在场三方所有人都懂的语言。兰杰少校将他们领到一间房间,在那里有一个被黑布蒙住的东西,当黑布被揭开时,英法的密码分析专家目瞪口呆。出现在他们眼前的是一台雷杰夫斯基的“炸弹”。当听到雷杰夫斯基破译ENIGMA的方法时,他们意识到波兰在密码分析方面比世界上任何国家先进至少十年。法国人尤其吃惊,他们以为他们得到的情报用处不大,所以很慷慨地把它们转给了波兰人,他们却让波兰人一直瞒着。英法密码分析专家对波兰同行的感激是无以言表的,直到那时,他们在破译德国密码的方面毫无进展。
兰杰少校给英法密码分析专家的最后惊喜是宣布赠送给他们两台ENIGMA的复制品,以及“炸弹”的图纸,它们由法国密码处的贝特朗(他是个少校了)通过外交邮包寄往巴黎。在横渡英吉利海峡的渡船上有两位看似平常的旅客:英国作家沙夏·居特里(Sacha Guitry)和他的太太女演员依弗娜·普林坦普斯(Yvonne Printemps)。但是在他们的旅行箱里却藏着当时英国最高的机密:一台波兰制造的ENIGMA。为了避开无所不在的德国间谍的耳目,ENIGMA就这样来到了英国,在那里等待它的将是它的彻底灭亡。
两星期后的1939年9月1日,希特勒发动“闪电战”入侵波兰。9月17日,苏联入侵波兰。9月28日,德军占领华沙,波兰不复存在。