当前位置:首页 » 密码管理 » 时钟加密法

时钟加密法

发布时间: 2022-06-16 14:25:14

㈠ 时钟狗是什么

时钟狗与以往加密产品最大的不同之处是它内置时钟芯片。通常,加密产品的试用期功能都是通过软件来实现的,这样虽然成本较低,但加密强度不高,比较容易破解。而时钟狗通过内置时钟芯片控制时间,具有很高的加密强度,其时钟时间可以严格限制软件的使用次数和使用时间。

时钟加密狗说白的话就是根据时间的变动看是否被被破解过
一下软件不是有时间限制吗 有写人就用该时间的方法来破解 不过时钟加密狗 一发现时钟被改变 那么加密狗就失去作用 也就是软件没有加密狗了 这样软件就无法启动了

㈡ 网络高手来

数据传输 数据传输(data transmission) 数据在传输信道上传递的方式。若按被传输的数据信号的特点,可分为基带传输、频带传输和数字数据传输;若按数据传输的顺序可分为并行传输和串行传输;若按数据传输的同步方式可分为同步传输和异步传输;若按数据传输的流向和时间可分为单工、半双工和全双工传输。基带、频带和数字数据传输 ①基带传输是指由数据终端设备(DTE)送出的二进制“1”或“0”的电信号直接送到电路的传输方式。基带信号未经调制,可以经过码形变换(或波形变换)进行驱动后直接传输。基带信号的特点是频谱中含有直流、低频和高频分量,随着频率升高,其幅度相应减小,最后趋于零。基带传输多用在短距离的数据传输中,如近程计算机间数据通信或局域网中用双绞线或同轴电缆为介质的数据传输。②大多数传输信道是带通型特性,基带信号通不过。采用调制方法把基带信号调制到信道带宽范围内进行传输,接收端通过解调方法再还原出基带信号的方式,称为频带传输。这种方式可实现远距离的数据通信,例如利用电话网可实现全国或全球范围的数据通信。③数字数据传输是利用数字话路传输数据信号的一种方式。例如,利用PCM(脉冲编码调制)数字电话通路,每一个话路可以传输64kbit/s的数据信号,不需要调制,效率高,传输质量好,是数据通信很好的一种传输方式。并行传输与串行传输 ①并行传输是构成字符的二进制代码在并行信道上同时传输的方式。例如,8单位代码字符要用8条信道并行同时传输,一次传一个字符,收、发双方不存在同步问题,速度快,但信道多、投资大,数据传输中很少采用。②串行传输是构成二进制代码在一条信道上以位(码 元)为单位,按时间顺序逐位传输的方式。按位发送,逐位接收,同时还要确认字符,所以要采取同步措施。速度虽慢,但只需一条传输信道,投资小,易于实现,是数据传输采用的主要传输方式。
异步传输和同步传输 ①异步传输是字符同步传输的方式,又称起止式同步。当发送一个字符代码时,字符前面要加一个“起”信号,长度为1个码元宽,极性为“0”,即空号极性;而在发完一个字符后面加一个“止”信号,长度为1,1.5(国际2号代码时用)或2个码元宽,极性为“1”,即传号极性。接收端通过检测起、止信号,即可区分出所传输的字符。字符可以连续发送,也可单独发送,不发送字符时,连续发送止信号。每一个字符起始时刻可以是任意的,一个字符内码元长度是相等的,接收端通过止信号到起信号的跳变(“1” “0”) 来检测一个新字符的开始。该方式简单,收、发双方时钟信号不需要精确同步。缺点是增加起、止信号,效率低,使用于低速数据传输中。②同步传输是位(码元)同步传输方式。该方式必须在收、发双方建立精确的位定时信号,以便正确区分每位数据信号。在传输中,数据要分成组(或称帧),一帧含多个字符代码或多个独立码元。在发送数据前,在每帧开始必须加上规定的帧同步码元序列,接收端检测出该序列标志后,确定帧的开始,建立双方同步。接收端DCE从接收序列中提取位定时信号,从而达到位(码元)同步。同步传输不加起、止信号,传输效率高,使用于2 400 bit/s以上数据传输,但技术比较复杂。单工、半双工和全双工传输 单工传输指数据只能按单一方向发送和接收;半双工传输指数据可以在两个方向传输但不能同时进行,即交替收、发;全双工传输指数据可以在两个方向同时传输,即同时收和发。一般四线线路为全双工数据传输,二线线路可实现全双工数据传输。

其实他说主机数据传输和网络数据传输都是一样的。
网络数据传输是说明网咯直接协议过程的传输,
你最好去多实践一下,书本的东西其实看看就行 要想真理解最好去实践。

㈢ 怎样给文件加密,有锁的.如果就单个文件加密呢

使用加密锁轻松实现软件租赁销售模式

传统的软件销售模式正随着竞争的加剧以及用户需求的变化而悄然改变着,试用和租赁软件的销售模式已经成为软件行业中一种常规的销售模式,据国内外软件行业专业预测,传统(一次性永久)的软禁销售模式,终将会被会员制以及按用量或使用时间计费制(即软件租赁销售模式)代替。软件厂商如果能很好的把握和利用这种发展趋势,将以更为贴近用户、降低用户风险的销售策略获得新的竞争优势。

坚石诚信ET金刚锁(http://www.jansh.com.cn/proct/detail.php?cid=46),内置时钟芯片,可以方便快捷地为软件开发商构建出一套软件分期付款、以租代买的全新销售模式。采用该解决方案后,极大地降低最终用户购买(试用)软件的风险,增强软件竞争力的同时,并没有增加软件开发商利益受损的风险。

坚石诚信ET金刚锁,通过精确的时间限制和远程升级来实现软件租赁销售模式。当软件授权到期后,最终用户端的ET金刚锁将没有授权再启动或运行软件,待确认用户已经支付剩余款项后,软件开发商利用ET金刚锁提供的远程升级方案就可以非常方便地对最终用户端的ET金刚锁进行异地时间授权。

实现软件分期付款或租赁销售模式时,对软件保护产品的加密强度、稳定性等都提出了极高的要求。ET金刚锁时钟芯片中为UTC标准时间,硬件上的安全设计保证了没有任何手段能够篡改时钟芯片内部时间,从而保证了计时加密的安全性。软件开发商通过锁内安全C51程序,在锁内获取时钟芯片的时间与预先设置的到期时间对比,从而决定是否继续运行锁内其他程序。由于全部过程在ET金刚锁内的智能卡芯片中完成,不出现在计算机内存中,杜绝任何破解攻击手段。

ET金刚锁是目前基于硬时钟芯片加密锁的典范,有效的结合了时间授权和远程升级,适合实现这种应用的产品。

㈣ 如何加密呢

1.安全模式——点击右上角图标进入(底色为黑色),在安全模式下发送的加密信息,在边上会有个绿底锁头小图标,退出安全模式,聊天界面变成底色为白底,加密的聊天信息也隐藏了。在初次进入安全模式下,请先绑定密盾,设置密盾口令,下次再进入安全模式,就要输入正确的口令才能看到加密的聊天记录。
2.阅后即焚——在聊天界面输入框的右边有个火焰的图标,点亮后,发出去的信息只有对方阅读完后,信息就不存在了,此功能也可在安全模式下操作。
3.绝密会话——在密友资料里可以看到,只有双方在线才可使用,进入绝密会话界面,中间有个时钟,是用来设置删除聊天记录的时间,可以边聊边删,一旦退出界面,所有聊天记录清除。

㈤ 三菱plc问题,我想用三菱plc和三菱触摸屏,做一个定时加密,然后在触摸屏上输入密码可解除加密。

完全可以的,触摸屏和plc的内部辅助继电器就是这样来操作的啊,因为触摸屏上的按钮都会有写入地址寄存器和读取地址寄存器两个,你把这两个都写成一个就完全可以了!

㈥ 如何把电脑时钟加密

去下载一个360安全卫士的锁定系统时间的程序

㈦ 怎么用触发器获取系统时间,用于加密一些东西

3)按计数增减分:加法计数器,减法计数器,加/减法计数器. 7.3.1 异步计数器 一,异步二进制计数器 1,异步二进制加法计数器 分析图7.3.1 由JK触发器组成的4位异步二进制加法计数器. 分析方法:由逻辑图到波形图(所有JK触发器均构成为T/ 触发器的形式,且后一级触发器的时钟脉冲是前一级触发器的输出Q),再由波形图到状态表,进而分析出其逻辑功能. 2,异步二进制减法计数器 减法运算规则:0000-1时,可视为(1)0000-1=1111;1111-1=1110,其余类推. 注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式. (2)CT74LS161的逻辑功能 ①=0时异步清零.C0=0 ②=1,=0时同步并行置数. ③==1且CPT=CPP=1时,按照4位自然二进制码进行同步二进制计数. ④==1且CPT·CPP=0时,计数器状态保持不变. 4,反馈置数法获得N进制计数器 方法如下: ·写出状态SN-1的二进制代码. ·求归零逻辑,即求置数控制端的逻辑表达式. ·画连线图. (集成计数器中,清零,置数均采用同步方式的有74LS163;均采用异步方式的有74LS193,74LS197,74LS192;清零采用异步方式,置数采用同步方式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等) 试用CT74LS161构成模小于16的N进制计数器 5,同步二进制加/减计数器 二,同步十进制加法计数器 8421BCD码同步十进制加法计数器电路分析 三,集成同计数器 1,集成十进制同步加法计数器CT74LS160 (1)CT74LS160的引脚排列和逻辑功能示意图 图7.3.3 CT74LS160的引脚排列图和逻辑功能示意图 (2)CT74LS160的逻辑功能 ①=0时异步清零.C0=0 ②=1,=0时同步并行置数. ③==1且CPT=CPP=1时,按照BCD码进行同步十进制计数. ④==1且CPT·CPP=0时,计数器状态保持不变. 2.集成十进制同步加/减计数器CT74LS190 其逻辑功能示意图如教材图7.3.15所示.功能如教材表7.3.10所示. 集成计数器小结: 集成十进制同步加法计数器74160,74162的引脚排列图,逻辑功能示意图与74161,74163相同,不同的是,74160和74162是十进制同步加法计数器,而74161和74163是4位二进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采用的是异步清零方式,而74162采用的是同步清零方式. 74190是单时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同.74192是双时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74193相同. 7.3.3 利用计数器的级联获得大容量N进制计数器 计数器的级联是将多个计数器串接起来,以获得计数容量更大的N进制计数器. 1,异步计数器一般没有专门的进位信号输出端,通常可以用本级的高位输出信号驱动下一级计数器计数,即采用串行进位方式来扩展容量. 举例:74LS290 (1)100进制计数器 (2)64进制计数器 2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下一级计数器计数.同步计数器级联的方式有两种,一种级间采用串行进位方式,即异步方式,这种方式是将低位计数器的进位输出直接作为高位计数器的时钟脉冲,异步方式的速度较慢.另一种级间采用并行进位方式,即同步方式,这种方式一般是把各计数器的CP端连在一起接统一的时钟脉冲,而低位计数器的进位输出送高位计数器的计数控制端. 举例:74161 (1)60进制 (2)12位二进制计数器(慢速计数方式) 12位二进制计数器(快速计数方式) 7.4 寄存器和移位寄存器 寄存器是由具有存储功能的触发器组合起来构成的.一个触发器可以存储1位二进制代码,存放n位二进制代码的寄存器,需用n个触发器来构成. 按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类.基本寄存器只能并行送入数据,需要时也只能并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入,并行输出,也可以串行输入,串行输出,还可以并行输入,串行输出,串行输入,并行输出,十分灵活,用途也很广. 7.4.1 基本寄存器 概念:在数字电路中,用来存放二进制数据或代码的电路称为寄存器. 1,单拍工作方式基本寄存器 无论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并行数据输入端的数据D0~D3,就立即被送入进寄存器中,即有: 2.双拍工作方式基本寄存器 (1)清零.CR=0,异步清零.即有: (2)送数.CR=1时,CP上升沿送数.即有: (3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变. 7.4.2 移位寄存器 1.单向移位寄存器 四位右移寄存器: 时钟方程: 驱动方程: 状态方程: 右移位寄存器的状态表: 输入 现态 次态 说明 Di CP 1 ↑ 1 ↑ 1 ↑ 1 ↑ 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 连续输入4个1 单向移位寄存器具有以下主要特点: 单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移. n位单向移位寄存器可以寄存n位二进制代码.n个CP脉冲即可完成串行输入工作,此后可从Q0~Qn-1端获得并行的n位二进制数码,再用n个CP脉冲又可实现串行输出操作. 若串行输入端状态为0,则n个CP脉冲后,寄存器便被清零. 2.双向移位寄存器 M=0时右移 M=1时左移 3.集成双向移位寄存器74LS194 CT74LS194的引脚排列图和逻辑功能示意图: CT74LS194的功能表: 工作状态 0 × × × 1 0 0 × 1 0 1 ↑ 1 1 0 ↑ 1 1 1 × 异步清零 保 持 右 移 左 移 并行输入 7.4.3 移位寄存器的应用 一,环形计数器 1,环形计数器是将单向移位寄存器的串行输入端和串行输出端相连, 构成一个闭合的环. 结构特点:,即将FFn-1的输出Qn-1接到FF0的输入端D0. 工作原理:根据起始状态设置的不同,在输入计数脉冲CP的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0.即当连续输入CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲. 实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全一致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n 2,能自启动的4位环形计数器 状态图: 由74LS194构成的能自启动的4位环形计数器 时序图 二,扭环形计数器 1,扭环形计数器是将单向移位寄存器的串行输入端和串行反相输出端相连,构成一个闭合的环. 实现扭环形计数器时,不必设置初态.扭环形计数器的进制数 N与移位寄存器内的触发器个数n满足N=2n的关系 结构特点为:,即将FFn-1的输出接到FF0的输入端D0. 状态图: 2,能自启动的4位扭环形计数器 7.4.4 顺序脉冲发生器 在数字电路中,能按一定时间,一定顺序轮流输出脉冲波形的电路称为顺序脉冲发生器. 顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间,一定顺序轮流为1,或者轮流为0.前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器. 一,计数器型顺序脉冲发生器 计数器型顺序脉冲发生器一般用按自然态序计数的二进制计数器和译码器构成. 举例:用集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发生器. 二,移位型顺序脉冲发生器 ◎移位型顺序脉冲发生器由移位寄存器型计数器加译码电路构成.其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发生器. ◎时序图: ◎由CT74LS194构成的顺序脉冲发生器 见教材P233的图7.4.6和图7.4.7 7.5 同步时序电路的设计(略) 7.6 数字系统一般故障的检查和排除(略) 本章小结 计数器是一种应用十分广泛的时序电路,除用于计数,分频外,还广泛用于数字测量,运算和控制,从小型数字仪表,到大型数字电子计算机,几乎无所不在,是任何现代数字系统中不可缺少的组成部分. 计数器可利用触发器和门电路构成.但在实际工作中,主要是利用集成计数器来构成.在用集成计数器构成N进制计数器时,需要利用清零端或置数控制端,让电路跳过某些状态来获得N进制计数器. 寄存器是用来存放二进制数据或代码的电路,是一种基本时序电路.任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取用. 寄存器分为基本寄存器和移位寄存器两大类.基本寄存器的数据只能并行输入,并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据可以并行输入,并行输出,串行输入,串行输出,并行输入,串行输出,串行输入,并行输出. 寄存器的应用很广,特别是移位寄存器,不仅可将串行数码转换成并行数码,或将并行数码转换成串行数码,还可以很方便地构成移位寄存器型计数器和顺序脉冲发生器等电路. 在数控装置和数字计算机中,往往需要机器按照人们事先规定的顺序进行运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,而且要求这些控制信号在时间上有一定的先后顺序.通常采取的方法是,用一个顺序脉冲发生器来产生时间上有先后顺序的脉冲,以控制系统各部分协调地工作. 顺序脉冲发生器分计数型和移位型两类.计数型顺序脉冲发生器状态利用率高,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产生竞争冒险,需要采取措施消除.移位型顺序脉冲发生器没有竞争冒险问题,但状态利用率低. 由JK触发器组成的4位异步二进制减法计数器的工作情况分析略. 二,异步十进制加法计数器 由JK触发器组成的异步十进制加法计数器的由来:在4位异步二进制加法计数器的基础上经过适当修改获得. 有效状态:0000——1001十个状态;无效状态:1010~1111六个状态. 三,集成异步计数器CT74LS290 为了达到多功能的目的,中规模异步计数器往往采用组合式的结构,即由两个独立的计数来构成整个的计数器芯片.如: 74LS90(290):由模2和模5的计数器组成; 74LS92 :由模2和模6的计数器组成; 74LS93 :由模2和模8的计数器组成. 1.CT74LS290的情况如下. (1)电路结构框图和逻辑功能示意图 (2)逻辑功能 如下表7.3.1所示. 注:5421码十进制计数时,从高位到低位的输出为. 2,利用反馈归零法获得N(任意正整数)进制计数器 方法如下: (1)写出状态SN的二进制代码. (2)求归零逻辑(写出反馈归零函数),即求异步清零端(或置数控制端)信号的逻辑表达式. (3)画连线图. 举例:试用CT74LS290构成模小于十的N进制计数器. CT74LS290则具有异步清零和异步置9功能.讲解教材P215的[例7.3.1]. 注:CT74LS90的功能与CT74LS290基本相同. 7.3.2 同步计数器 一,同步二进制计数器 1.同步二进制加法计数器 2,同步二进制减法计数器 3,集成同步二进制计数器CT74LS161 (1)CT74LS161的引脚排列和逻辑功能示意图 注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式. (2)CT74LS161的逻辑功能 ①=0时异步清零.C0=0 ②=1,=0时同步并行置数. ③==1且CPT=CPP=1时,按照4位自然二进制码进行同步二进制计数. ④==1且CPT·CPP=0时,计数器状态保持不变. 4,反馈置数法获得N进制计数器 方法如下: ·写出状态SN-1的二进制代码. ·求归零逻辑,即求置数控制端的逻辑表达式. ·画连线图. (集成计数器中,清零,置数均采用同步方式的有74LS163;均采用异步方式的有74LS193,74LS197,74LS192;清零采用异步方式,置数采用同步方式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等) 试用CT74LS161构成模小于16的N进制计数器 5,同步二进制加/减计数器 二,同步十进制加法计数器 8421BCD码同步十进制加法计数器电路分析 三,集成同计数器 1,集成十进制同步加法计数器CT74LS160 (1)CT74LS160的引脚排列和逻辑功能示意图 图7.3.3 CT74LS160的引脚排列图和逻辑功能示意图 (2)CT74LS160的逻辑功能 ①=0时异步清零.C0=0 ②=1,=0时同步并行置数. ③==1且CPT=CPP=1时,按照BCD码进行同步十进制计数. ④==1且CPT·CPP=0时,计数器状态保持不变. 2.集成十进制同步加/减计数器CT74LS190 其逻辑功能示意图如教材图7.3.15所示.功能如教材表7.3.10所示. 集成计数器小结: 集成十进制同步加法计数器74160,74162的引脚排列图,逻辑功能示意图与74161,74163相同,不同的是,74160和74162是十进制同步加法计数器,而74161和74163是4位二进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采用的是异步清零方式,而74162采用的是同步清零方式. 74190是单时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同.74192是双时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74193相同. 7.3.3 利用计数器的级联获得大容量N进制计数器 计数器的级联是将多个计数器串接起来,以获得计数容量更大的N进制计数器. 1,异步计数器一般没有专门的进位信号输出端,通常可以用本级的高位输出信号驱动下一级计数器计数,即采用串行进位方式来扩展容量. 举例:74LS290 (1)100进制计数器 (2)64进制计数器 2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下一级计数器计数.同步计数器级联的方式有两种,一种级间采用串行进位方式,即异步方式,这种方式是将低位计数器的进位输出直接作为高位计数器的时钟脉冲,异步方式的速度较慢.另一种级间采用并行进位方式,即同步方式,这种方式一般是把各计数器的CP端连在一起接统一的时钟脉冲,而低位计数器的进位输出送高位计数器的计数控制端. 举例:74161 (1)60进制 (2)12位二进制计数器(慢速计数方式) 12位二进制计数器(快速计数方式) 7.4 寄存器和移位寄存器 寄存器是由具有存储功能的触发器组合起来构成的.一个触发器可以存储1位二进制代码,存放n位二进制代码的寄存器,需用n个触发器来构成. 按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类.基本寄存器只能并行送入数据,需要时也只能并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入,并行输出,也可以串行输入,串行输出,还可以并行输入,串行输出,串行输入,并行输出,十分灵活,用途也很广. 7.4.1 基本寄存器 概念:在数字电路中,用来存放二进制数据或代码的电路称为寄存器. 1,单拍工作方式基本寄存器 无论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并行数据输入端的数据D0~D3,就立即被送入进寄存器中,即有: 2.双拍工作方式基本寄存器 (1)清零.CR=0,异步清零.即有: (2)送数.CR=1时,CP上升沿送数.即有: (3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变. 7.4.2 移位寄存器 1.单向移位寄存器 四位右移寄存器: 时钟方程: 驱动方程: 状态方程: 右移位寄存器的状态表: 输入 现态 次态 说明 Di CP 1 ↑ 1 ↑ 1 ↑ 1 ↑ 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 连续输入4个1 单向移位寄存器具有以下主要特点: 单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移. n位单向移位寄存器可以寄存n位二进制代码.n个CP脉冲即可完成串行输入工作,此后可从Q0~Qn-1端获得并行的n位二进制数码,再用n个CP脉冲又可实现串行输出操作. 若串行输入端状态为0,则n个CP脉冲后,寄存器便被清零. 2.双向移位寄存器 M=0时右移 M=1时左移 3.集成双向移位寄存器74LS194 CT74LS194的引脚排列图和逻辑功能示意图: CT74LS194的功能表: 工作状态 0 × × × 1 0 0 × 1 0 1 ↑ 1 1 0 ↑ 1 1 1 × 异步清零 保 持 右 移 左 移 并行输入 7.4.3 移位寄存器的应用 一,环形计数器 1,环形计数器是将单向移位寄存器的串行输入端和串行输出端相连, 构成一个闭合的环. 结构特点:,即将FFn-1的输出Qn-1接到FF0的输入端D0. 工作原理:根据起始状态设置的不同,在输入计数脉冲CP的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0.即当连续输入CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲. 实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全一致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n 2,能自启动的4位环形计数器 状态图: 由74LS194构成的能自启动的4位环形计数器 时序图 二,扭环形计数器 1,扭环形计数器是将单向移位寄存器的串行输入端和串行反相输出端相连,构成一个闭合的环. 实现扭环形计数器时,不必设置初态.扭环形计数器的进制数 N与移位寄存器内的触发器个数n满足N=2n的关系 结构特点为:,即将FFn-1的输出接到FF0的输入端D0. 状态图: 2,能自启动的4位扭环形计数器 7.4.4 顺序脉冲发生器 在数字电路中,能按一定时间,一定顺序轮流输出脉冲波形的电路称为顺序脉冲发生器. 顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间,一定顺序轮流为1,或者轮流为0.前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器.

㈧ PLC怎样和系统时钟对时,进行倒计时加密

这个就是定时器的应用了,方案1、PLC采用编码式输出控制,程序分为两大部分,控制部分和显示部分,控制部分很简单了,就是把要显示的数字存入寄存器,里面用一个时间继电器,一秒记时,然后加入秒、分、时三个计数器,计数器的数字都放在寄存器里面,同时可设置程序对里面的数字进行更改;显示部分采用流动显示,
方案二、设置独立显示器,然后直接与显示器通讯进行显示,这个主程序没有多大变法,就是要加以个通讯程序就可以了

㈨ 时钟加密狗的作用

精锐5时钟锁采用硬件时钟功能,时间模块由锁内的可充电电池供电,和计算机本地时间不再产生硬性关联,保证时间的准确性。硬件时钟相比于虚拟时钟,不再受本地时间的约束,锁内自动运行时间模块,在保证电量正常的情况下,锁内时间不会随着PC时间的更改而变化。
可充电电池:不依赖USB供电,电池可连续工作240天,5年电池寿命。插入电脑时,可利用电脑对电池充电。
高时间精度:时钟芯片带有温度补偿功能,高精度,年误差150秒(两分半钟),正负0.4秒/天
时钟校准:Virbox 用户工具支持对精锐5硬件时钟锁的时钟校准功能
远程升级:便捷远程升级,无需修改软件代码,软件开发者只需重新签发许可发给用户。
抗摔:时钟芯片内置硅振荡器,抗振、抗干扰性好
时钟切换:时钟锁在出现掉电的情况下,锁内时间将会出现偏差,此时需要对其进行时钟校准;当掉电次数达到19次以上,将自动启用虚拟时钟功能,此时也可通过时钟校准功能恢复硬件时钟

热点内容
安卓如何获取view的宽高 发布:2025-05-11 14:12:31 浏览:899
神算吧源码 发布:2025-05-11 13:44:59 浏览:63
我的世界网易服务器如何添加模组 发布:2025-05-11 13:28:10 浏览:949
内存哪些配置比较好 发布:2025-05-11 13:24:24 浏览:772
宝马编程价格 发布:2025-05-11 13:10:36 浏览:580
切人切面算法 发布:2025-05-11 13:09:17 浏览:300
linux线程串口 发布:2025-05-11 13:03:00 浏览:78
nds服务器ip地址 发布:2025-05-11 12:43:32 浏览:870
舒听澜卓禹安书名叫什么 发布:2025-05-11 12:36:44 浏览:269
java开发web应用 发布:2025-05-11 12:35:51 浏览:697