加密算法实现
Ⅰ 数据在网络上传输为什么要加密现在常用的数据加密算法主要有哪些
数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。
端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。
数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。
常见加密算法
1、DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;
2、3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;
3、RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;
4、IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;
5、RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:
首先, 找出三个数,p,q,r,其中 p,q 是两个不相同的质数,r 是与 (p-1)(q-1) 互为质数的数。
p,q,r这三个数便是 private key。接着,找出 m,使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在,因为 r 与 (p-1)(q-1) 互质,用辗转相除法就可以得到了。再来,计算 n = pq.......m,n 这两个数便是 public key。
6、DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;
7、AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法。
8、BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
9、MD5:严格来说不算加密算法,只能说是摘要算法;
对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
(1)加密算法实现扩展阅读
数据加密标准
传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。
数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。
DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。
每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。
DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。
参考资料来源:网络-加密算法
参考资料来源:网络-数据加密
Ⅱ java 中的加密算法用.Net 怎样实现
C#使用SHA1算hash如下:
byte[]data=newbyte[DATA_SIZE];
byte[]result;
SHA1sha=newSHA1CryptoServiceProvider();
result=sha.ComputeHash(data);
我这其实是从MSDN抄的:https://msdn.microsoft.com/zh-cn/library/system.security.cryptography.sha1cryptoserviceprovider(v=VS.80).aspx
C#的RSA加密,可以参考MSDN,其实和Java差不多,都封装好了的,几行代码搞定:
https://msdn.microsoft.com/zh-cn/library/system.security.cryptography.rsacryptoserviceprovider(v=vs.80).aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-4
Ⅲ java对几种加密算法的实现
算法是你自己定义啊,比如说你的加密算法是a,b,c也就是每个字符之间逗号隔开,你解密时就加上这个规则就行了,算法规则是你自定的,比如1+1也是一种规则啊
Ⅳ 几种常见加密算法解析及使用
几种对称性加密算法:AES,DES,3DES
DES是一种分组数据加密技术(先将数据分成固定长度的小数据块,之后进行加密),速度较快,适用于大量数据加密,而3DES是一种基于DES的加密算法,使用3个不同密匙对同一个分组数据块进行3次加密,如此以使得密文强度更高。
相较于DES和3DES算法而言,AES算法有着更高的速度和资源使用效率,安全级别也较之更高了,被称为下一代加密标准。
几种非对称性加密算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC较之则有着很多的性能优越,包括处理速度,带宽要求,存储空间等等。
几种线性散列算法(签名算法):MD5,SHA1,HMAC
这几种算法只生成一串不可逆的密文,经常用其效验数据传输过程中是否经过修改,因为相同的生成算法对于同一明文只会生成唯一的密文,若相同算法生成的密文不同,则证明传输数据进行过了修改。通常在数据传说过程前,使用MD5和SHA1算法均需要发送和接收数据双方在数据传送之前就知道密匙生成算法,而HMAC与之不同的是需要生成一个密匙,发送方用此密匙对数据进行摘要处理(生成密文),接收方再利用此密匙对接收到的数据进行摘要处理,再判断生成的密文是否相同。
对于各种加密算法的选用:
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。
Ⅳ 如何实现定长数字串加密算法
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高; RC2和 RC4:用变长密钥对大量数据进行加密,比 DES 快; IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性; RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件快的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准); AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法; BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快; 其它算法,如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。
Ⅵ 对称加密算法的加密算法主要有哪些
1、3DES算法
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(M)))
3DES解密过程为:M=Dk1(EK2(Dk3(C)))
2、Blowfish算法
BlowFish算法用来加密64Bit长度的字符串。
BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。
分别说明如下:
密钥预处理:
BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:
1)用sbox填充key_sbox
2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。
比如说:选的key是"abcdefghijklmn"。则异或过程为:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循环,直到key_pbox填充完毕。
3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,继续第4步,直到key_pbox全部被替换;
6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。
信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。
3、RC5算法
RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。
(6)加密算法实现扩展阅读:
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。
对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。
这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。
Ⅶ 接口测试中的加密算法如何实现
加密实现对于测试而言,的确是件头疼的事情,毕竟大多数测试没有编码基础,即便有编程也是短板,要是实现加密算法的话,主要有两种方式:
1. 可以以纯编码的方式实现,比如使用 Java 或 Python等
2. 如果是测试工具的话,比如Jmeter,可以求助开发将加密算法导出为 jar 包,然后我们测试再在 Jmeter 中导入jar包,再调用类似于 BeanShell 取样器的组件,调用开发提供的加密函数(可以一定程度的减少代码量) 获得更多关于测试的知识,建议你去找视频学习一下,黑马程序员官网就有很多专业的视频,应该挺适合你的。
Ⅷ des算法加密解密的实现
本文介绍了一种国际上通用的加密算法—DES算法的原理,并给出了在VC++6.0语言环境下实现的源代码。最后给出一个示例,以供参考。
关键字:DES算法、明文、密文、密钥、VC;
本文程序运行效果图如下:
正文:
当今社会是信息化的社会。为了适应社会对计算机数据安全保密越来越高的要求,美国国家标准局(NBS)于1997年公布了一个由IBM公司研制的一种加密算法,并且确定为非机要部门使用的数据加密标准,简称DES(Data Encrypton Standard)。自公布之日起,DES算法作为国际上商用保密通信和计算机通信的最常用算法,一直活跃在国际保密通信的舞台上,扮演了十分突出的角色。现将DES算法简单介绍一下,并给出实现DES算法的VC源代码。
DES算法由加密、解密和子密钥的生成三部分组成。
一.加密
DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:
DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:
IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:
f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。
R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:
对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:
E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31
膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:
P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:
在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。(S表如图所示)
至此,DES算法加密原理讲完了。在VC++6.0下的程序源代码为:
for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串输入,经过IP置换。
下面进行迭代。由于各次迭代的方法相同只是输入输出不同,因此只给出其中一次。以第八次为例://进行第八次迭代。首先进行S盒的运算,输入32位比特串。
for(i=1;i<=48;i++)//经过E变换扩充,由32位变为48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//与K8按位作不进位加法运算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8组
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面经过S盒,得到8个数。S1,s2,s3,s4,s5,s6,s7,s8分别为S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8个数变换输出二进制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//经过P变换
frk[i]=f[P[i-1]];//S盒运算完成
for(i=1;i<33;i++)//左右交换
L8[i]=R7[i];
for(i=1;i<33;i++)//R8为L7与f(R,K)进行不进位二进制加法运算结果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}
[ 原创文档 本文适合中级读者 已阅读21783次 ] 文档 代码 工具
DES算法及其在VC++6.0下的实现(下)
作者:航天医学工程研究所四室 朱彦军
在《DES算法及其在VC++6.0下的实现(上)》中主要介绍了DES算法的基本原理,下面让我们继续:
二.子密钥的生成
64比特的密钥生成16个48比特的子密钥。其生成过程见图:
子密钥生成过程具体解释如下:
64比特的密钥K,经过PC-1后,生成56比特的串。其下标如表所示:
PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
该比特串分为长度相等的比特串C0和D0。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:
PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2……依次类推直至生成子密钥K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:
迭代顺序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
生成子密钥的VC程序源代码如下:
for(i=1;i<57;i++)//输入64位K,经过PC-1变为56位 k0[i]=k[PC_1[i-1]];
56位的K0,均分为28位的C0,D0。C0,D0生成K1和C1,D1。以下几次迭代方法相同,仅以生成K8为例。 for(i=1;i<27;i++)//循环左移两位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密钥k8
注意:生成的子密钥不同,所需循环左移的位数也不同。源程序中以生成子密钥 K8为例,所以循环左移了两位。但在编程中,生成不同的子密钥应以Lsi表为准。
三.解密
DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:
加密后的结果
L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:
得 L=R0, R=L0。
其程序源代码与加密相同。在此就不重写。
四.示例
例如:已知明文m=learning, 密钥 k=computer。
明文m的ASCII二进制表示:
m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111
密钥k的ASCII二进制表示:
k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
明文m经过IP置换后,得:
11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000
等分为左右两段:
L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000
经过16次迭代后,所得结果为:
L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=
其中,f函数的结果为:
f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=
16个子密钥为:
K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=
S盒中,16次运算时,每次的8 个结果为:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;
子密钥生成过程中,生成的数值为:
C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000
解密过程与加密过程相反,所得的数据的顺序恰好相反。在此就不赘述。
参考书目:
《计算机系统安全》 重庆出版社 卢开澄等编着
《计算机密码应用基础》 科学出版社 朱文余等编着
《Visual C++ 6.0 编程实例与技巧》 机械工业出版社 王华等编着