百万级访问量
❶ 如何对百万级的数据进行数据分析
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统
计
学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOsql、SQL等。
基础架构: 云存储、分布式文件存储等。
数
据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数
据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大
数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统
计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与
前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于
统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
❷ 一个用户量在十万、百万和千万级别的 SNS 网站,硬件方面的运营成本分别为多少
如果按照一个SNS网站从零到大的这么一个过程来讲的话,随着访问量的上升,按照我的经验,硬件容易出现瓶颈和顺序如下:
1.先是IO的瓶颈,当动态请求增加,IO的瓶颈是最先出现的。这个问题可以通过读写分离,加cache来解决。或者直接升级硬件,或者通过负载均衡,在水平层面上增加机器。
2.然后是数据库的瓶颈,这个时候就要靠业务层表的拆分啊,或者mysql这样的分发复制机制,达到多台数据库server同时提供读的服务的要求,来跨越这个瓶颈,当然也可以通过增加cache和升级数据库server的方法。
3.然后是存储空间的问题,内容增加,包括图片等静态文件和数据。这需要增加存储容量或者存储服务器,可以用上各种分布式文件系统,有钱的话可以直接上cache。
4.到达这个层面,就是机柜空间的问题了,你的服务器多了,机柜可能装不下,到了这时,你应该不差钱了,IDC的建设也应该提上日程。
还有对所有大公司来说,cdn,网络带宽和中国特色的双网互联的情况也是很大的一笔投入,像阿里为了联通和电信的双网联通,投了很多钱做一条专线。
同样技术水平也是很重要的一点,如果有能力做优化,硬件的成本就能降下来,举个例子,人人网的邵军辉在volocity上的分享我听过,他们用c++重写了整个web层,原来用40台java server扛住的流量用6台C++ server就解决了。
总体上的硬件运维上的问题就是这些,不包括一些故障,2A备份还有网络带宽的成本的问题,希望能满足你的提问。
❸ 什么是网站架构
网站架构,一般认为是根据客户需求分析的结果,准确定位网站目标群体,设定网站整体架构,规划、设计网站栏目及其内容,制定网站开发流程及顺序,以最大限度地进行高效资源分配与管理的设计。其内容有程序架构,呈现架构,和信息架构三种表现。而步骤主要分为硬架构和软架构两步程序。网络架构是现代网络学习和发展的一个必须的基础技术。
中文名
网站架构
一般认为
根据客户需求分析的结果
制定
网站开发流程及顺序
内容
程序架构,呈现架构
快速
导航
软架构八个方案
硬架构
机房的选择
在选择机房的时候,根据网站用户的地域分布,可以选择网通或电信机房,但更多时候,可能双线机房才是合适的。越大的城市,机房价格越贵,从成本的角度看可以在一些中小城市托管服务器,比如说北京的公司可以考虑把服务器托管在天津,廊坊等地,不是特别远,但是价格会便宜很多。
带宽的大小
通常老板花钱请我们架构网站的时候,会给我们提出一些目标,诸如网站每天要能承受100万PV的访问量等等。这时我们要预算一下大概需要多大的带宽,计算带宽大小主要涉及两个指标(峰值流量和页面大小),我们不妨在计算前先做出必要的假设:
第一:假设峰值流量是平均流量的5倍。
第二:假设每次访问平均的页面大小是100K字节左右。
如果100万PV的访问量在一天内平均分布的话,折合到每秒大约12次访问,如果按平均每次访问页面的大小是100K字节左右计算的话,这12次访问总计大约就是1200K字节,字节的单位是Byte,而带宽的单位是bit,它们之间的关系是1Byte = 8bit,所以1200K Byte大致就相当于9600K bit,也就是9Mbps的样子,实际情况中,我们的网站必须能在峰值流量时保持正常访问,所以按照假设的峰值流量算,真实带宽的需求应该在45Mbps 左右。
当然,这个结论是建立在前面提到的两点假设的基础上,如果你的实际情况和这两点假设有出入,那么结果也会有差别。
服务器的划分
先看我们都需要哪些服务器:图片服务器,页面服务器,数据库服务器,应用服务器,日志服务器等等。
对于访问量大点的网站而言,分离单独的图片服务器和页面服务器相当必要,我们可以用lighttpd来跑图片服务器,用apache来跑页面服务器,当然也可以选择别的,甚至,我们可以扩展成很多台图片服务器和很多台页面服务器,并设置相关域名,如img.domain和 www.domain,页面里的图片路径都使用绝对路径,如<img src="http://img.domain/abc.gif" />,然后设置DNS轮循,达到最初级的负载均衡。当然,服务器多了就不可避免的涉及一个同步的问题,这个可以使用rsync软件来搞定。
数据库服务器是重中之重,因为网站的瓶颈问题十有八九是出在数据库身上。一般的中小网站多使用MySQL数据库,不过它的集群功能似乎还没有达到stable的阶段,所以这里不做评价。一般而言,使用MySQL数据库的时候,我们应该搞一个主从(一主多从)结构,主数据库服务器使用innodb表结构,从数据服务器使用myisam表结构,充分发挥它们各自的优势,而且这样的主从结构分离了读写操作,降低了读操作的压力,甚至我们还可以设定一个专门的从服务器做备份服务器,方便备份。不然如果你只有一台主服务器,在大数据量的情况下,mysqlmp基本就没戏了,直接拷贝数据文件的话,还得先停止数据库服务再拷贝,否则备份文件会出错。但对于很多网站而言,即使数据库服务仅停止了一秒也是不可接受的。如果你有了一台从数据库服务器,在备份数据的时候,可以先停止服务(slave stop)再备份,再启动服务(slave start)后从服务器会自动从主服务器同步数据,一切都没有影响。但是主从结构也是有致命缺点的,那就是主从结构只是降低了读操作的压力,却不能降低写操作的压力。
为了适应更大的规模,可能只剩下最后这招了:横向/纵向分割数据库。所谓横向分割数据库,就是把不同的表保存到不同的数据库服务器上,比如说 用户表保存在A数据库服务器上,文章表保存在B数据库服务器上,当然这样的分割是有代价的,最基本的就是你没法进行LEFT JOIN之类的操作了。所谓纵向分割数据库,一般是指按照用户标识(user_id)等来划分数据存储的服务器,比如说:我们有5台数据库服务器,那么 “user_id % 5 + 1”等于1的就保存到1号服务器,等于2的就保存到2号服务器,以此类推,纵向分隔的原则有很多种,可以视情况选择。不过和横向分割数据库一样,纵向分割数据库也是有代价的,最基本的就是我们在进行如COUNT, SUM等汇总操作的时候会麻烦很多。综上所述,数据库服务器的解决方案一般视情况往往是一个混合的方案,以其发挥各种方案的优势,有时候还需要借助memcached之类的第三方软件,以便适应更大访问量的要求。
如果有专门的应用服务器来跑php脚本是最合适不过的了,那样我们的页面服务器只保存静态页面就可以了,可以给应用服务器设置一些诸如app.domain之类的域名来和页面服务器加以区别。对于应用服务器,我还是更倾向于使用prefork模式的apache,配上必要的xcache之类的PHP缓存软件,加载模块要越少越好,除了mod_rewrite等必要的模块,不必要的东西统统舍弃,尽量减少httpd进程的内存消耗,而那些图片服务器,页面服务器等静态内容就可以使用lighttpd或者tux来搞,充分发挥各种服务器的特点。
如果条件允许,独立的日志服务器也是必要的,一般小网站的做法都是把页面服务器和日志服务器合二为一了,在凌晨访问量不大的时候cron运行前一天的日志计算,不过如果你使用awstats之类的日志分析软件,对于百万级访问量而言,即使按天归档,也会消耗很多时间和服务器资源去计算,所以分离单独的日志服务器还是有好处的,这样不会影响正式服务器的工作状态。
软架构
框架的选择
PHP框架有很多选择,比如:CakePHP,Symfony,Zend Framework等等,至于应该使用哪一个并没有唯一的答案,要根据Team里团队成员对各个框架的了解程度而定。很多时候,即使没有使用框架,一样能 写出好的程序来,比如Flickr据说就是用Pear+Smarty这样的类库写出来的,所以,是否用框架,用什么框架,一般不是最重要的,重要的是我们 的编程思想里要有框架的意识。
逻辑的分层
❹ linux课程以及Linux主要学习哪些内容
对于Linux的学习,可以分为四个阶段,Linux初级入门阶段→Linux中级进阶→Linux高级进阶→Linux资深方向细化阶段
第一阶段:初级阶段
初级阶段需要把linux学习路线搞清楚,任何学习都是循序渐进的,所以学linux也是需要有一定的路线。
1. Linux基础知识、基本命令;
2. Linux用户及权限基础;
3. Linux系统进程管理进阶;
4. linux高效文本、文件处理命令;
5. shell脚本入门
第二阶段:中级进阶
中级进阶需要在充分了解linux原理和基础知识之后,对上层的应用和服务进行深入学习,其中说到服务肯定涉及到网络的相关知识,是需要花时间学习的。
1. TCP/IP网络基础;
2. Linux企业常用服务;
3. Linux企业级安全原理和防范技巧;
4. 加密/解密原理及数据安全、系统服务访问控制及服务安全基础;
5. iptables安全策略构建;
6. shell脚本进阶;
7. MySQL应用原理及管理入门
第三阶段:Linux高级进阶
1. http服务代理缓存加速;
2. 企业级负载集群;
3. 企业级高可用集群;
4. 运维监控zabbix详解;
5. 运维自动化学习;
第四阶段:Linux资深方向细化
1. 大数据方向;
2. 云计算方向;
3. 运维开发;
4. 自动化运维;
5. 运维架构师
❺ 承受每天百万级访问量的网站需要多少台服务器
服务器的构成与微机基本相似,有处理器、硬盘、内存、系统总线等,它们是针对具体的网络应用特别制定的,因而服务器与微机在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面存在差异很大。
一台独立服务器同时承受4到5万访客在线,差不多还能保证不影响速度,算下来20到30台服务器,就是一个小机房。
❻ 承受每天百万级访问量的网站需要多少台服务器
一台独立服务器同时承受4到5万访客在线,差不多还能保证不影响速度,算下来20到30台服务器,就是一个小机房
❼ 搭建一个日点击量百万以上的 电子商务网站,它的硬件设备投资大概会是多少
百万级访问量网站的技术准备工作
当今从纯网站技术上来说,因为开源模式的发展,现在建一个小网站已经很简单也很便宜,所以很多人都把创业方向定位在互联网应用。这些人里大多数不是很懂技术,或者不是那么精通,而网站开发维护方面的知识又很分散,学习成本太高,所以这篇文章将这些知识点结合起来,系统的来说,一个从日几千访问的小小网站,到日访问一两百万的小网站,中间可能会产生什么问题,以及怎么才能在一开始做足工作尽量避免这些问题。
你的网站因为努力经营,访问量逐渐升高,在升高的过程中,问题也可能开始显现了。因为带宽的增加、硬件的扩展、人员的扩张所带来的成本提高是显而易见的,而还有相当大的一部分成本是因为代码重构、架构重构,甚至底层开发语言更换引起的,最坏的情况就是数据丢失,所有努力付之一炬。这类成本支出大多数在一开始就可以避免,先打好基础,往后可以省很多精力,少操很多心。
对于不同的初期投资成本,技术路线的选择是不同的。这里假设网站刚刚只是一个构想,计划第一年服务器硬件带宽投入5万左右。对于这个资金额度,有很多种方案可选择,例如租用虚拟主机、租用单独服务器,或者流行的私有云,或者托管服务器。前两种选择,网站发展到一定规模时需迁移,那时再重做规划显然影响更大。服务器托管因为配置自主、能完全掌握控制权,所以有一定规模的网站基本都是这种模式。采用自己托管服务器的网站,一开始要注意以下几点——
一、开发语言
一般来说,技术人员(程序员)都是根据自己技术背景选择自己最熟悉的语言,不过不可能永远是一个人写程序,所以在语言的选择上还要是要费些心思。首先明确一点,无论用什么语言,最终代码质量是看管理,因此我们从前期开发成本分析。现在国内流行的适用于网站的语言,大概有java、php、.net、 python、ruby这五大阵营。python和ruby因为在国内流行的比较晚,现在人员还是相对难招一些。.net平台的人相对多,但是到后期需要解决性能问题时,对人员技能的要求比较高。剩余的java、php用人可以说是最多的。java和php无法从语言层面做比较,但对于初期,应用几乎都是靠前端支撑的网站来说,php入门简单、编写快速,优势相对大一点。至于后端例如行为分析、银行接口、异步消息处理等,等真正需要时,就要根据不同业务需求来选择不同语言了。
二、代码版本管理
稍微有点规模的网站就需要使用代码版本管理了。代码版本管理两点最大的好处,一是方便协同工作,二是有历史记录可查询比较。代码版本管理软件有很多,vss/cvs/svn/hg等,目前国内都比较流行,其中svn的普及度还是很高的。
假设选了svn,那么有几点考虑。一是采用什么树结构。初期可能只有一条主干,往后就需要建立分支,例如一条开发分支,一条上线分支,再往后,可能要每个小组一个分支。建议一开始人少时选择两条分支,开发和线上,每个功能本地测试无误后提交到开发分支,最后统一测试,可以上线时合并到上线分支。如果每人都建自己的分支,合并时会浪费很大精力,对于几乎每天都要修改几次的WEB应用来说,所费时间太多。
向服务器部署代码,可以手工部署也可以自动部署。手工部署相对简单,一般可直接在服务器上svn update,或者找个新目录svn checkout,再把web root给ln -s过去。应用越复杂,部署越复杂,没有什么统一标准,只是别再用ftp上传那种形式,一是上传时文件引用不一致错误率增加,二是很容易出现开发人员的版本跟线上版本不一致,导致本来想改个错字结果变成回滚。如果有多台服务器还是建议自动部署,更换代码的机器从当前服务池中临时撤出,更新完毕后再重新加入。
三、服务器硬件
在各个机房里,靠一台服务器孤独支撑的网站数不清,但如果资金稍微充足,建议至少三台的标准配置,分别用作web处理、数据库、备份。web服务器至少要8G内存,双sata raid1,如果经济稍微宽松,或静态文件或图片多,则15k sas raid10。数据库至少16G内存,15k sas raid 10。备份服务器最好跟数据库服务器同等配置。硬件可以上整套品牌,也可以兼容机,也可以半品牌半组装,取决于经济能力。当然,这是典型的搭配,有些类型应用的性能瓶颈首先出现在web上,那种情况就要单独分析了。
web服务器可以既跑程序又当内存缓存,数据库服务器则只跑主数据库(假如是MySQL的话),备份服务器所承担就相对多一些,web配置、缓存配置、数据库配置都要跟前两台一致,这样WEB和数据库任意一台出问题,很容易就可以将备份服务器切换过去临时顶替,直到解决完问题。要注意,硬件是随时可能坏掉的,特别是硬盘,所以宁可WEB服务器跟数据库服务器放在一起,也一定不能省掉备份,备份一定要异机,并且有异步,电力故障、误操作都可能导致一台机器上的所有数据丢失。很多的开源备份方案可选择,最简单的就是rsync,写crontab里,定时同步。备份和切换,建议多做测试,选最安全最适合业务的,并且尽可能异地备份。
四、机房
三种机房尽量不要选:联通访问特别慢的电信机房、电信访问特别慢的联通机房、电信联通访问特别慢的移动或铁通机房。机房要尽可能多的实地参观,多测试,找个网络质量好,管理严格的机房。机房可以说是非常重要,直接关系到网站访问速度,网站访问速度直接关系到用户体验,访问速度很慢的网站,很难获得用户青睐。
五、架构
在大方向上,被熟知的架构是web负载均衡+数据库主从+缓存+分布式存储+队列。在一开始,按照可扩展的原则设计和编程就可以。只是要多考虑缓存失效时的雪崩效应、主从同步的数据一致性和时间差、队列的稳定性和失败后的重试策略、文件存储的效率和备份方式等等意外情况。缓存失效、数据库复制中断、队列写入错误、电源损坏,在实际运维中经常发生,如果不注意这些,出现问题时恢复期可能会超出预期很长时间。
六、服务器软件
操作系统Linux很流行。在没有专业运维人员的情况下,应倾向于择使用的人多、社区活跃、配置方便、升级方便的发行版,例如RH系列、 debian、ubuntu server等,硬件和操作系统要一起选择,看是否有适合的驱动,如果确定用某种商业软件或解决方案,也要提前知晓其对哪种操作系统支持最佳。web服务器方面,apache、nginx、lighttpd三大系列中,apache占有量还是最大,但是想把性能调教好还是需要很专业的,nginx和 lighttpd在不需要太多调整的情况下可以达到一个比较不错的性能。无论选择什么软件,除非改过这些软件或你的程序真的不兼容新版本,否则尽量版本越新越好,版本新,意味着新特性增多、BUG减少、性能增加。一个典型的php网站,基本上大多数人都没改过任何服务器软件源代码,绝大多数情况是能平稳的升级到新版本的。类似于jdk5到 jdk6,python2到python3这类变动比较大的升级还是比较少见的。看看ChangeLog,看看升级说明,结合自己情况评估测试一下,越早升级越好,升级的越晚,所花费的成本越高。对于软件包,尽量使用发行版内置的包管理工具,没有特殊要求时不建议自己编译,那样对将来运维不利。
七、数据库
几乎所有操作最后都要落到数据库身上,它又最难扩展(存储也挺难)。数据库常见的扩展方法有复制、分片,设计时要考虑到每种应用的数据如何复制、分片,当然这种考虑一般会推迟到技术设计时期。在初期进行数据库结构设计时,要根据不同的业务类型和增长量预期来考虑是否要分库、分区,并且尽量不要使用联合查询、不使用自增ID以方便分片。复制延时问题、主从数据库数据一致性问题,可以自己写或者用已有的运维工具进行检测。
用存储过程是比较难扩展的,这种情形多发生于传统C/S,特别是OA系统转换过来的开发人员。低成本网站不是一两台小型机跑一个数据库处理所有业务的模式,是机海作战。方便水平扩展比那点预分析时间和网络传输流量要重要的多的多。
另外,现在流行一种概念叫NoSQL,可以理解为非传统关系型数据库。实际应用中,网站有着越来越多的密集写操作、上亿的简单关系数据读取、热备等,这都不是传统关系数据库所擅长的,于是就产生了很多非关系型数据库,比如Redis/TC&TT/MongoDB/Memcachedb等,在测试中,这些几乎都达到了每秒至少一万次的写操作,内存型的甚至5万以上。在设计时,可根据业务特点和性能要求来选择是否使用这类数据库。例如 MongoDB,几句配置就可以组建一个复制+自动分片+failover的环境,文档化的存储也简化了传统设计库结构再开发的模式。但是当你决定采用一项技术时,一定要真正了解其优劣,例如可能你所选择的技术并不能支持你所需要的事务和数据一致性要求。
八、文件存储
存储的分布几乎跟数据库扩展一样困难,不过只有百万的PV的情况下,磁盘IO方面一般不会成大问题,一两台采用SATA做条带RAID的机器可以应付,反而是自己做异步备份比较复杂,因为小文件多。如果只有一台机器做存储,可以做简单的优化,例如放最小缩略图的分区和放中等缩略图的分区,根据平均大小调整一下块大小。存储要规划好目录结构,否则文件增多后维护起来复杂,也不利于扩展。同时还要考虑将来扩容,例如采用LVM,或者把文件根据不同规则散列到不同机器。磁盘IO繁重的情况下更容易出现故障,所以要做好备份,若发现有盘坏掉,要马上行动更换,很多人的硬盘都是坏了一块之后,接二连三的坏下去。
为了将来图片走cdn做准备,一开始最好就将图片的域名分开,且不用主域名。因为很多网站都将cookie设置到了.domain.ltd,如果图片也在这个域名下,很可能因为cookie而造成缓存失效,并且占多余流量,还可能因为浏览器并发线程限制造成访问缓慢。
九、程序
一定硬件条件下,应用能承载多少访问量,很大一部分也取决于程序如何写。程序写的不好,可能一万的访问都承载不了,写的好,可能一两台机器就能承担几百万PV。越是复杂、数据实时性要求越高的应用,优化起来越难,但对普通网站有一个统一的思路,就是尽量向前端优化、减少数据库操作、减少磁盘IO。向前端优化指的是,在不影响功能和体验的情况下,能在浏览器执行的不要在服务端执行,能在缓存服务器上直接返回的不要到应用服务器,程序能直接取得的结果不要到外部取得,本机内能取得的数据不要到远程取,内存能取到的不要到磁盘取,缓存中有的不要去数据库查询。减少数据库操作指减少更新次数、缓存结果减少查询次数、将数据库执行的操作尽可能的让你的程序完成(例如join查询),减少磁盘IO指尽量不使用文件系统作为缓存、减少读写文件次数等。程序优化永远要优化慢的部分,换语法是无法“优化”的。
然而编程时不应该把重点放在优化上,应该关注扩展性。当今的WEB应用,需求变化非常之快,适应多种需求的架构是不存在的,我们的扩展性就要把要点放在跟底层交互的架构上,例如持久化数据的存取规则、缓存的存取规则等,还有一些共用服务,例如用户信息等。先把不变的部分做完善,剩下的部分就很容易将精力放在业务逻辑上面了。
❽ 承受每天百万级访问量的网站需要多少台服务器
一般情况下,一台至强高配置的服务器一天能承载十几到二十万左右的访问量.如果有达到上百万的访问量.可以通过多台服务器来做负载均衡解决这个问题.比如说把网站的前端页面和数据库分开,用10台机器.其中一台高配置的放数据库.另外9台机器放前端页面.然后利用DNSPOD智能解析,把一个域名解析指向9台机器的IP.DNSPOD本身有智能分配的功能.当一台服务器的资源不足以满足用户的访问需求时会自动切换到其他机器上面访问.