数据加密类型
① 数据加密技术分哪两类
加密技术分为:
1、对称加密
对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难
2、非对称
1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。
相关信息:
目前主流的加密技术有对称加密例如DES,3DES和AES,然后还有非对称加密技术:例如RSA和椭圆加密算法。对称加密的话,就是用来加密和解密的密钥是一样的,非对称加密的话,加密的密钥和解密的密钥是不一样的,用加密的密钥加密以后,只有配对的另外一个密钥才能解开。
另外我们还可以常常看到MD5,SHA,SHA1之类的算法,其实他们不是加密算法,因为他们的结算结果不可逆,你没法从结果得到输入的数据是什么,他们的用途主要是为了防止泄密和修改数据,因为对于这些算法来说,每一个输入只能有一个输出,修改了输入就会使得输出变化很大,所以被人修改了数据的话通过这个算法就能知道了。
另外我校验密码的时候,如果只是通过这个计算结果来对比的话,其他人如果不知道我的密码,即使他能解码我的程序也不行,因为程序里面只有结果,没有输入的密码。
② 加密方式有几种
加密方式的种类:
1、MD5
一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。
2、对称加密
对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
3、非对称加密
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。
如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
(2)数据加密类型扩展阅读
非对称加密工作过程
1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。
在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。
③ 数据库加密的方式有哪几种
数据库加密的方式有多种,不同场景下仍在使用的数据库加密技术主要有:前置代理加密、应用系统加密、文件系统加密、后置代理加密、表空间加密和磁盘加密等,这些你找安策工程师帮你,都是可以做到的网络里面也有详细介绍。
④ 数据加密技术的分类
对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而如今仍广泛被采用。
DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。 公开密钥,又称非对称密钥,加密和解密时使用不同的密钥,即不同的算法,虽然两者之间存在一定的关系,但不可能轻易地从一个推导出另一个。有一把公用的加密密钥,有多把解密密钥,如RSA算法。
非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。
在这种编码过程中,一个密码用来加密消息,而另一个密码用来解密消息。在两个密钥中有一种关系,通常是数学关系。公钥和私钥都是一组十分长的、数字上相关的素数(是另一个大数字的因数)。有一个密钥不足以翻译出消息,因为用一个密钥加密的消息只能用另一个密钥才能解密。每个用户可以得到唯一的一对密钥,一个是公开的,另一个是保密的。公共密钥保存在公共区域,可在用户中传递,甚至可印在报纸上面。而私钥必须存放在安全保密的地方。任何人都可以有你的公钥,但是只有你一个人能有你的私钥。它的工作过程是:“你要我听你的吗?除非你用我的公钥加密该消息,我就可以听你的,因为我知道没有别人在偷听。只有我的私钥(其他人没有)才能解密该消息,所以我知道没有人能读到这个消息。我不必担心大家都有我的公钥,因为它不能用来解密该消息。”
公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者,即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。 数字签名一般采用非对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。
数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征,是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。
值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。
⑤ 加密技术分为哪两类
加密技术分为:
1、对称加密
对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难
2、非对称
1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。
加密技术的功能:
原有的单密钥加密技术采用特定加密密钥加密数据,而解密时用于解密的密钥与加密密钥相同,这称之为对称型加密算法。采用此加密技术的理论基础的加密方法如果用于网络传输数据加密,则不可避免地出现安全漏洞。
区别于原有的单密钥加密技术,PKI采用非对称的加密算法,即由原文加密成密文的密钥不同于由密文解密为原文的密钥,以避免第三方获取密钥后将密文解密。
以上内容参考:网络—加密技术
⑥ 数据加密的方法和类型
数据加密方法有链路加密、节点加密和端到端加密。所谓数据加密(Data Encryption)技术是指将一个信息(或称明文,plain text)经过加密钥匙(Encryption key)及加密函数转换,变成无意义的密文(cipher text),而接收方则将此密文经过解密函数、解密钥匙(
⑦ 数据加密主要有哪些方式
主要有两种方式:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)
链路加密
对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。
由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。
在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。
在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。
在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密
尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。
节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。
端到端加密
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。
端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。
端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。