对称加密流程
㈠ 什么是对称加密
对称加密顾名思义就是加密和解密的密钥是相同的。
㈡ 用图示说明对称加密技术和非对称加密技术相结合(即数字信封技术)的工作过程。
数字信封技术用于保证资料在传输过程中的安全。对称密钥加密和公钥加密技术各有其优缺点,对称密钥加密算法效率高,但密钥的愤发和管理都很困难;而公钥加密算法密钥易于管理和传递,但运行效率太低,不适于加密大量的消息,而且它要求被加密的信息块长度要小于密钥的长度。数字信封技术结合了密钥加密技术和公钥加密技术各自的优点,克服了密钥加密技术中密钥分发和管理困难和公钥加密技术中加解密效率低的缺点,充分利用了密钥系统的高效性和公钥系统的灵活性,保证信息在传输过程中的灵活性。
数字信封技术首先使用密钥加密技术对要发送的消息进行加密;再利用公钥加密技术对密钥系统中使用的密钥进行加密。然后把加密的消息和加密的密钥一起传送给接收方。其具体的实现方法和步骤如下:
说明:以上图中的步骤可以解释为:
①在需要发送信息时,发送方Alice先生成一个对称密钥K;
②Alice利用生成的对称密钥K和相应的对称密钥算法E( • )对要发送的明文消息P进行加密,生成密文C=Ek(P);
③然后Alice再用接收方Bob提供的公钥KpB 对刚才用到的加密明文P的密钥K进行加密,得到加密后的密钥Ck;
④Alice把加密后的消息C和加密后的对称密钥Ck作为密文一起传送给Bob。
⑤Bob接收到密文后,先用自己的私钥解密Ck还原出对称密钥K,然后再用得到的K,根据实现商定好的对称密钥算法解密得到明文P。
数字信封技术实际上是使用双层加密体制。在内层,利用对称密钥加密技术,每次传送消息都可以重新生成新的对称密钥,实现了一次一密,保证了信息的安全性。在外层,使用公钥加密技术对对称密钥进行加密,保证对称密钥传输的安全性。数字信封技术的应用,使资料信息在公共为了中的传输有了安全保障。
㈢ 对称加密算法的加密算法主要有哪些
1、3DES算法
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(M)))
3DES解密过程为:M=Dk1(EK2(Dk3(C)))
2、Blowfish算法
BlowFish算法用来加密64Bit长度的字符串。
BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。
分别说明如下:
密钥预处理:
BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:
1)用sbox填充key_sbox
2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。
比如说:选的key是"abcdefghijklmn"。则异或过程为:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循环,直到key_pbox填充完毕。
3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,继续第4步,直到key_pbox全部被替换;
6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。
信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。
3、RC5算法
RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。
(3)对称加密流程扩展阅读:
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。
对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。
这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。
㈣ 对称加密算法的工作原理、作用及其流程图
对称加密的核心——通信双方共享一个密钥
通信过程:
A有明文m,使用加密算法E,密钥key,生成密文c=E(key,m);
B收到密文c,使用解密算法D,密钥key,得到明文m=D(key,c);
比喻:
对称加密是最直观,也是历史最久远的加密手段,类似于加锁和解锁,只不过钥匙的个数非常多(~~2^100),一个人穷其一生也试不完所有可能的钥匙。
㈤ 非对称加密和对称加密的区别
非对称加密和对称加密在加密和解密过程、加密解密速度、传输的安全性上都有所不同,具体介绍如下:
1、加密和解密过程不同
对称加密过程和解密过程使用的同一个密钥,加密过程相当于用原文+密钥可以传输出密文,同时解密过程用密文-密钥可以推导出原文。但非对称加密采用了两个密钥,一般使用公钥进行加密,使用私钥进行解密。
2、加密解密速度不同
对称加密解密的速度比较快,适合数据比较长时的使用。非对称加密和解密花费的时间长、速度相对较慢,只适合对少量数据的使用。
3、传输的安全性不同
对称加密的过程中无法确保密钥被安全传递,密文在传输过程中是可能被第三方截获的,如果密码本也被第三方截获,则传输的密码信息将被第三方破获,安全性相对较低。
非对称加密算法中私钥是基于不同的算法生成不同的随机数,私钥通过一定的加密算法推导出公钥,但私钥到公钥的推导过程是单向的,也就是说公钥无法反推导出私钥。所以安全性较高。
㈥ 对称密钥加密技术的工作流程
SQL Server 2005一个令人激动的特性是内置了加密的功能。在这个新版的SQL Server中,开发团队直接在T-SQL中加入了加密工具、证书创建和密钥管理的功能。对于因为法律要求或商业需求而需要加密表中的数据的人来说,这是一个好礼物。对于犹豫是否用加密来保证数据安全的人来说,做决定也更容易了。这篇文章介绍新的加密功能是怎么工作,怎么使用。
TSQL现在支持使用对称密钥和非对称密钥,证书和密码。本文介绍如何创建、管理和使用对称密钥和证书。
根据涉及的内容,我决定把本文分为三节:
第一部分:服务主密钥和数据库主密钥
第二部分:证书
第三部分:对称密钥
1. 服务主密钥和数据库主密钥
图:SQL Server 2005加密层次结构
1.1 服务主密钥
当第一次需要使用服务主密钥对链接服务器密码、凭据或数据库主密钥进行加密时,便会自动生成服务主密钥。服务主密钥为 SQL Server 加密层次结构的根。服务主密钥直接或间接地保护树中的所有其他密钥和机密内容。使用本地计算机密钥和 Windows 数据保护 API 对服务主密钥进行加密。该 API 使用从 SQL Server 服务帐户的 Windows 凭据中派生出来的密钥。
因为服务主密钥是自动生成且由系统管理的,它只需要很少的管理。服务主密钥可以通过BACKUP SERVICE MASTER KEY语句来备份,格式为:
BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file' ENCRYPTION BY PASSWORD = 'password'
'path_to_file' 指定要将服务主密钥导出到的文件的完整路径(包括文件名)。此路径可以是本地路径,也可以是网络位置的 UNC 路径。
'password' 用于对备份文件中的服务主密钥进行加密的密码。此密码应通过复杂性检查。
应当对服务主密钥进行备份,并将其存储在另外一个单独的安全位置。创建该备份应该是首先在服务器中执行的管理操作之一。
如果需要从备份文件中恢复服务主密钥,使用RESTORE SERVICE MASTER KEY语句。
RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password' [FORCE]
'path_to_file' 指定存储服务主密钥的完整路径(包括文件名)。path_to_file 可以是本地路径,也可以是网络位置的 UNC 路径。
PASSWORD = 'password' 指定对从文件中导入的服务主密钥进行解密时所需的密码。
FORCE 即使存在数据丢失的风险,也要强制替换服务主密钥。
注:如果你在使用RESTORE SERVICE MASTER KEY时不得不使用FORCE选项,你可能会遇到部分或全部加密数据丢失的情况。
如果你的服务主密钥泄露了,或者你想更改SQL Server服务帐户,你可以通过ALTERSERVICE MASTER KEY语句重新生成或者恢复服务主密钥。它的用法请参考联机丛书。
因为服务主密钥是SQL Server自动生成的,所以,它没有对应的CREATE和DROP语句。
1.2 数据库主密钥
正如每个SQL Server有一个服务主密钥,每个数据库有自己的数据库主密钥。数据库主密钥通过CREATE MASTER KEY语句生成:
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'
这个语句创建数据库主密钥,使用指定的密码加密它,并保存在数据库中。同时,数据库主密钥也被使用服务主密钥加密之后保存在master数据库中,这就是所谓的“自动密钥管理”。这个特性我们待会再讲。
象服务主密钥一样,你可以备份和恢复数据库主密钥。使用BACKUP MASTER KEY备份数据库主密钥。语法类似于备份服务主密钥:
BACKUP MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'password'
恢复数据库主密钥使用RESTORE MASTER KEY语句,它需要使用DECRYPTION BY PASSWORD子句提供备份时指定的加密密码,还要使用ENCRYPTION BY PASSWORD子句,SQL Server使用它提供的密码来加密数据库主密钥之后保存在数据库中。
RESTORE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password'
ENCRYPTION BY PASSWORD = 'password'
[ FORCE ]
同样,FORCE表示你将忽略在解密过程中的错误。
建议你在创建了数据库主密钥之后立即备份数据库主密钥,并把它保存到一个安全的地方。同样,使用FORCE语句可能导致已加密数据的丢失。
要删除数据库主密钥,使用DROP MASTER KEY语句,它删除当前数据库的主密钥。在执行之前,确定你在正确的数据库上下文中。
1.3 自动密钥管理
当创建数据库主密钥时,它被使用提供的密码加密然后被保存到当前数据库中。同时,它被使用服务主密钥加密并保存到master数据库中。这份保存的数据库主密钥允许服务器在需要的时候解密数据库主密钥,这就是自动密钥管理。没有自动密钥管理的话,你必须在每次使用证书或密钥加密或解密数据(它需要使用数据库主密钥)时使用OPEN MASTER KEY语句同时提供加密的密码。使用自动密钥管理,你不需要执行OPEN MASTER KEY语句,也不需要提供密码。
自动密钥管理的缺点就是每个sysadmin角色的成员都能够解密数据库主密钥。你可以通过ALTER MASTER KEY语句的DROP ENCRYPTION BY SERVICE MASTER KEY子句,从而不使用自动密钥管理。ALTER MASTER KEY的使用方法参见联机丛书。
㈦ 对称加密和非对称加密的区别
非对称加密和对称加密在加密和解密过程、加密解密速度、传输的安全性上都有所不同,具体介绍如下:
1、加密和解密过程不同
对称加密过程和解密过程使用的同一个密钥,加密过程相当于用原文+密钥可以传输出密文,同时解密过程用密文-密钥可以推导出原文。但非对称加密采用了两个密钥,一般使用公钥进行加密,使用私钥进行解密。
2、加密解密速度不同
对称加密解密的速度比较快,适合数据比较长时的使用。非对称加密和解密花费的时间长、速度相对较慢,只适合对少量数据的使用。
3、传输的安全性不同
对称加密的过程中无法确保密钥被安全传递,密文在传输过程中是可能被第三方截获的,如果密码本也被第三方截获,则传输的密码信息将被第三方破获,安全性相对较低。
非对称加密算法中私钥是基于不同的算法生成不同的随机数,私钥通过一定的加密算法推导出公钥,但私钥到公钥的推导过程是单向的,也就是说公钥无法反推导出私钥。所以安全性较高。
来源:-对称加密
来源:-非对称加密
㈧ 对称加密的工作过程
下面举个例子来简要说明一下对称加密的工作过程。甲和乙是一对生意搭档,他们住在不同的城市。由于生意上的需要,他们经常会相互之间邮寄重要的货物。为了保证货物的安全,他们商定制作一个保险盒,将物品放入其中。他们打造了两把相同的钥匙分别保管,以便在收到包裹时用这个钥匙打开保险盒,以及在邮寄货物前用这把钥匙锁上保险盒。
上面是一个将重要资源安全传递到目的地的传统方式,只要甲乙小心保管好钥匙,那么就算有人得到保险盒,也无法打开。这个思想被用到了现代计算机通信的信息加密中。在对称加密中,数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密。
㈨ 常用的对称密码算法有哪些
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
㈩ 谁帮我介绍下加密对称算法
A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性至关重要。 b.特点分析 对称加密的优点在于算法实现后的效率高、速度快。 对称加密的缺点在于密钥的管理过于复杂。如果任何一对发送方和接收方都有他们各自商议的密钥的话,那么很明显,假设有N个用户进行对称加密通信,如果按照上述方法,则他们要产生N(N-1)把密钥,每一个用户要记住或保留N-1把密钥,当N很大时,记住是不可能的,而保留起来又会引起密钥泄漏可能性的增加。常用的对称加密算法有DES,DEA等。 B.非对称加密技术 a.描述 非对称加密(dissymmetrical encryption),有时又叫公开密钥算法(public key algorithm)。这种加密算法是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以又叫做公开密钥算法是由于加密密钥可以公开,即陌生人可以得到它并用来加密信息,但只有用相应的解密密钥才能解密信息。在这种加密算法中,加密密钥被叫做公开密钥(public key),而解密密钥被叫做私有密钥(private key)。 b.特点分析 非对称加密的缺点在于算法实现后的效率低、速度慢。 非对称加密的优点在于用户不必记忆大量的提前商定好的密钥,因为发送方和接收方事先根本不必商定密钥,发放方只要可以得到可靠的接收方的公开密钥就可以给他发送信息了,而且即使双方根本互不相识。但为了保证可靠性,非对称加密算法需要一种与之相配合使用的公开密钥管理机制,这种公开密钥管理机制还要解决其他一些公开密钥所带来的问题。常用的非对称加密算法有RSA等。 (3) 关于密码技术 密码技术包括加密技术和密码分析技术,也即加密和解密技术两个方面。在一个新的加密算法的研发需要有相应的数学理论证明,证明这个算法的安全性有多高,同时还要从密码分析的角度对这个算法进行安全证明,说明这个算法对于所知的分析方法来说是有防范作用的。 三、对称加密算法分析 对称加密算法的分类 对称加密算法可以分成两类:一类为序列算法(stream algorithm):一次只对明文中单个位(有时为字节)加密或解密运算。另一类为分组算法(block algorithm):一次明文的一组固定长度的字节加密或解密运算。 现代计算机密码算法一般采用的都是分组算法,而且一般分组的长度为64位,之所以如此是由于这个长度大到足以防止分析破译,但又小到足以方便使用。 1.DES加密算法 (Data Encryption Standard )
(1) 算法简介
1973 年 5 月 15 日,美国国家标准局 (NBS) 在“联邦注册”上发布了一条通知,征求密码算法,用于在传输和存储期间保护数据。IBM 提交了一个候选算法,它是 IBM 内部开发的,名为 LUCIFER。在美国国家安全局 (NSA) 的“指导”下完成了算法评估之后,在 1977 年 7 月 15 日,NBS 采纳了 LUCIFER 算法的修正版作为新的数据加密标准。
原先规定使用10年,但由于新的加密标准还没有完成,所以DES算法及其的变形算法一直广泛的应用于信息加密方面。 (2) 算法描述 (包括加密和解密)
Feistel结构(画图说明)。
DES 的工作方式:可怕的细节
DES 将消息分成 64 位(即 16 个十六进制数)一组进行加密。DES 使用“密钥”进行加密,从符号的角度来看,“密钥”的长度是 16 个十六进制数(或 64 位)。但是,由于某些原因(可能是因为 NSA 给 NBS 的“指引”),DES 算法中每逢第 8 位就被忽略。这造成密钥的实际大小变成 56 位。编码系统对“强行”或“野蛮”攻击的抵抗力与其密钥空间或者系统可能有多少密钥有直接关系。使用的位数越多转换出的密钥也越多。密钥越多,就意味着强行攻击中计算密钥空间中可能的密钥范围所需的时间就越长。从总长度中切除 8 位就会在很大程度上限制了密钥空间,这样系统就更容易受到破坏。
DES 是块加密算法。这表示它处理特定大小的纯文本块(通常是 64 位),然后返回相同大小的密码块。这样,64 位(每位不是 0 就是 1)有 264 种可能排列,DES 将生成其中的一种排列。每个 64 位的块都被分成 L、R 左右两块,每块 32 位。
DES 算法使用以下步骤:
1. 创建 16 个子密钥,每个长度是 48 位。根据指定的顺序或“表”置换 64 位的密钥。如果表中的第一项是 "27",这表示原始密钥 K 中的第 27 位将变成置换后的密钥 K+ 的第一位。如果表的第二项是 36,则这表示原始密钥中的第 36 位将变成置换后密钥的第二位,以此类推。这是一个线性替换方法,它创建了一种线性排列。置换后的密钥中只出现了原始密钥中的 56 位。
2. 接着,将这个密钥分成左右两半,C0 和 D0,每一半 28 位。定义了 C0 和 D0 之后,创建 16 个 Cn 和 Dn 块,其中 1<=n<=16。每一对 Cn 和 Dn 块都通过使用标识“左移位”的表分别从前一对 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而“左移位”表说明了要对哪一位进行操作。在所有情况下,单一左移位表示这些位轮流向左移动一个位置。在一次左移位之后,28 个位置中的这些位分别是以前的第 2、3……28 位。
通过将另一个置换表应用于每一个 CnDn 连接对,从而形成密钥 Kn,1<=n<=16。每一对有 56 位,而置换表只使用其中的 48 位,因为每逢第 8 位都将被忽略。
3. 编码每个 64 位的数据块。
64 位的消息数据 M 有一个初始置换 IP。这将根据置换表重新排列这些位,置换表中的项按这些位的初始顺序描述了它们新的排列。我们以前见过这种线性表结构。
使用函数 f 来生成一个 32 位的块,函数 f 对两个块进行操作,一个是 32 位的数据块,一个是 48 位的密钥 Kn,连续迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然后,n 从 1 到 16,计算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我们用前一结果的右边 32 位,并使它们成为当前步骤中的左边 32 位。对于当前步骤中的右边 32 位,我们用算法 f XOR 前一步骤中的左边 32 位。
要计算 f,首先将每一块 Rn-1 从 32 位扩展到 48 位。可以使用选择表来重复 Rn-1 中的一些位来完成这一操作。这个选择表的使用就成了函数 f。因此 f(Rn-1) 的输入块是 32 位,输出块是 48 位。f 的输出是 48 位,写成 8 块,每块 6 位,这是通过根据已知表按顺序选择输入中的位来实现的。
我们已经使用选择表将 Rn-1 从 32 位扩展成 48 位,并将结果 XOR 密钥 Kn。现在有 48 位,或者是 8 组,每组 6 位。每组中的 6 位现在将经历一次变换,该变换是算法的核心部分:在叫做“S 盒”的表中,我们将这些位当作地址使用。每组 6 位在不同的 S 盒中表示不同的地址。该地址中是一个 4 位数字,它将替换原来的 6 位。最终结果是 8 组,每组 6 位变换成 8 组,每组 4 位(S 盒的 4 位输出),总共 32 位。
f 计算的最后阶段是对 S 盒输出执行置换 P,以得到 f 的最终值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置换 P 根据 32 位输入,在以上的过程中通过置换输入块中的位,生成 32 位输出。
解密只是加密的逆过程,使用以上相同的步骤,但要逆转应用子密钥的顺序。DES 算法是可逆的
(2) 算法的安全性分析
在知道一些明文和密文分组的条件下,从理论上讲很容易知道对DES进行一次穷举攻击的复杂程度:密钥的长度是56位,所以会有 种的可能的密钥。
在1993年的一年一度的世界密码大会上,加拿大北方电信公司贝尔实验室的 Michael Wiener 描述了如何构造一台专用的机器破译DES,该机器利用一种每秒能搜索5000万个密钥的专用芯片。而且此机器的扩展性很好,投入的经费越多则效率越高。用100万美元构造的机器平均3.5小时就可以破译密码。
如果不用专用的机器,破译DES也有其他的方法。在1994年的世界密码大会上,M.Matsui 提出一种攻克DES的新方法--"线性密码分析"法。它可使用平均 个明文及其密文,在12台HP9000/735工作站上用此方法的软件实现,花费50天时间完成对DES的攻击。
如前所述DES作为加密算法的标准已经二十多年了,可以说是一个很老的算法,而在新的加密算法的国际标准出现之前,许多DES的加固性改进算法仍有实用价值,在本文的3.4节详细的描述,同时考虑的以上所述DES的安全性已受到了威胁。
(4) 算法的变体 三重DES(TDEA),使用3个密钥,执行3次DES算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特点:安全性得到增强,但是速度变慢。
2.AES
自 20 世纪 70 年代以来一直广泛使用的“数据加密标准”(DES) 日益显出衰老的痕迹,而一种新的算法 -- Rijndael -- 正顺利地逐渐变成新标准。这里,Larry Loeb 详细说明了每一种算法,并提供了关于为什么会发生这种变化的内幕信息。
DES 算法是全世界最广泛使用的加密算法。最近,就在 2000 年 10 月,它在其初期就取得的硬件方面的优势已经阻碍了其发展,作为政府加密技术的基础,它已由“高级加密标准”(AES) 中包含的另一种加密算法代替了。AES 是指定的标准密码系统,未来将由政府和银行业用户使用。AES 用来实际编码数据的加密算法与以前的 DES 标准不同。我们将讨论这是如何发生的,以及 AES 中的 Rijndael 算法是如何取代 DES 的算法的。
“高级加密标准”成就
但直到 1997 年,美国国家标准技术局 (NIST) 才开始打着 AES 项目的旗帜征集其接任者。1997 年 4 月的一个 AES 研讨会宣布了以下 AES 成就的最初目标:
• 可供政府和商业使用的功能强大的加密算法
• 支持标准密码本方式
• 要明显比 DES 3 有效
• 密钥大小可变,这样就可在必要时增加安全性
• 以公正和公开的方式进行选择
• 可以公开定义
• 可以公开评估
AES 的草案中最低可接受要求和评估标准是:
A.1 AES 应该可以公开定义。
A.2 AES 应该是对称的块密码。
A.3 AES 应该设计成密钥长度可以根据需要增加。
A.4 AES 应该可以在硬件和软件中实现。
A.5 AES 应该 a) 可免费获得。
A.6 将根据以下要素评价符合上述要求的算法:
1. 安全性(密码分析所需的努力)
2. 计算效率
3. 内存需求
4. 硬件和软件可适用性
5. 简易性
6. 灵活性
7. 许可证需求(见上面的 A5)
Rijndael:AES 算法获胜者
1998年8月20日NIST召开了第一次AES侯选会议,并公布了15个AES侯选算法。经过一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5种算法通过了第二轮的选拔。2000 年 10 月,NIST 选择 Rijndael(发音为 "Rhine dale")作为 AES 算法。它目前还不会代替 DES 3 成为政府日常加密的方法,因为它还须通过测试过程,“使用者”将在该测试过程后发表他们的看法。但相信它可以顺利过关。
Rijndael 是带有可变块长和可变密钥长度的迭代块密码。块长和密钥长度可以分别指定成 128、192 或 256 位。
Rijndael 中的某些操作是在字节级上定义的,字节表示有限字段 GF(28) 中的元素,一个字节中有 8 位。其它操作都根据 4 字节字定义。
加法照例对应于字节级的简单逐位 EXOR。
在多项式表示中,GF(28) 的乘法对应于多项式乘法模除阶数为 8 的不可约分二进制多项式。(如果一个多项式除了 1 和它本身之外没有其它约数,则称它为不可约分的。)对于 Rijndael,这个多项式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六进制表示为 '11B'。其结果是一个阶数低于 8 的二进制多项式。不像加法,它没有字节级的简单操作。
不使用 Feistel 结构!
在大多数加密算法中,轮回变换都使用着名的 Feistel 结构。在这个结构中,中间 State 的位部分通常不做更改调换到另一个位置。(这种线性结构的示例是我们在 DES 部分中讨论的那些表,即使用固定表的形式交换位。)Rijndael 的轮回变换不使用这个古老的 Feistel 结构。轮回变换由三个不同的可逆一致变换组成,叫做层。(“一致”在这里表示以类似方法处理 State 中的位。)
线性混合层保证了在多个轮回后的高度扩散。非线性层使用 S 盒的并行应用,该应用程序有期望的(因此是最佳的)最差非线性特性。S 盒是非线性的。依我看来,这就 DES 和 Rijndael 之间的密钥概念差异。密钥加法层是对中间 State 的轮回密钥 (Round Key) 的简单 EXOR,如以下所注。
Rijndael算法
加密算法
Rijndael算法是一个由可变数据块长和可变密钥长的迭代分组加密算法,数据块长和密钥长可分别为128,192或256比特。
数据块要经过多次数据变换操作,每一次变换操作产生一个中间结果,这个中间结果叫做状态。状态可表示为二维字节数组,它有4行,Nb列,且Nb等于数据块长除32。如表2-3所示。
a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5
数据块按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的顺序映射为状态中的字节。在加密操作结束时,密文按同样的顺序从状态中抽取。
密钥也可类似地表示为二维字节数组,它有4行,Nk列,且Nk等于密钥块长除32。算法变换的圈数Nr由Nb和Nk共同决定,具体值列在表2-4中。
表3-2 Nb和Nk决定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14
3.2.1圈变换
加密算法的圈变换由4个不同的变换组成,定义成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密算法的最后一圈变换与上面的略有不同,定义如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}
ByteSub变换
ByteSub变换是作用在状态中每个字节上的一种非线形字节变换。这个S盒子是可逆的且由以下两部分组成:
把字节的值用它的乘法逆替代,其中‘00’的逆就是它自己。
经(1)处理后的字节值进行如下定义的仿射变换:
y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1
ShiftRow变换
在ShiftRow变换中,状态的后3行以不同的移位值循环右移,行1移C1字节,行2移C2字节,行3移C3字节。
移位值C1,C2和C3与加密块长Nb有关,具体列在表2-5中:
表3-3 不同块长的移位值
Nb C1 C2 C3
4 1 2 3
MixColumn变换
在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式与一固定多项式c(x)相乘然后模多项式x4+1,其中c(x)为:
c(x) =‘03’x3 + ‘01’x2 + ‘01’x + ‘02’
圈密钥加法
在这个操作中,圈密钥被简单地使用异或操作按位应用到状态中。圈密钥通过密钥编制得到,圈密钥长等于数据块长Nb。
在这个表示法中,“函数”(Round, ByteSub, ShiftRow,...) 对那些被提供指针 (State, RoundKey) 的数组进行操作。ByteSub 变换是非线性字节交换,各自作用于每个 State 字节上。在 ShiftRow 中,State 的行按不同的偏移量循环移位。在 MixColumn 中,将 State 的列视为 GF(28) 多项式,然后乘以固定多项式 c( x ) 并模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。这个多项式与 x4 + 1 互质,因此是可逆的。
轮回密钥通过密钥计划方式从密码密钥 (Cipher Key) 派生而出。它有两个组件:密钥扩展 (Key Expansion) 和轮回密钥选择 (Round Key Selection)。轮回密钥的总位数等于块长度乘以轮回次数加 1(例如,块长度等于 128 位,10 次轮回,那么就需要 1408 个轮回密钥位)。
密码密钥扩充成扩展密钥 (Expanded Key)。轮回密钥是通过以下方法从这个扩展密钥中派生的:第一个轮回密钥由前 Nb(Nb = 块长度)个字组成,第二个由接着的 Nb 个字组成,以此类推。
加密算法由以下部分组成:初始轮回密钥加法、Nr-1 个轮回和最后一个轮回。在伪 C 代码中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已经预先执行了密钥扩展,则可以根据扩展密钥指定加密算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由于 Rijndael 是可逆的,解密过程只是颠倒上述的步骤。
最后,开发者将仔细考虑如何集成这种安全性进展,使之成为继 Rijndael 之后又一个得到广泛使用的加密算法。AES 将很快应一般商业团体的要求取代 DES 成为标准,而该领域的发展进步无疑将追随其后。
3.IDEA加密算法 (1) 算法简介 IDEA算法是International Data Encryption Algorithmic 的缩写,意为国际数据加密算法。是由中国学者朱学嘉博士和着名密码学家James Massey 于1990年联合提出的,当时被叫作PES(Proposed Encryption Standard)算法,后为了加强抵抗差分密码分,经修改于1992年最后完成,并命名为IDEA算法。 (2) 算法描述 这个部分参见论文上的图 (3) 算法的安全性分析 安全性:IDEA的密钥长度是128位,比DES长了2倍多。所以如果用穷举强行攻击的话, 么,为了获得密钥需要 次搜索,如果可以设计一种每秒能搜索十亿把密钥的芯片,并且 采用十亿个芯片来并行处理的话,也要用上 年。而对于其他攻击方式来说,由于此算法 比较的新,在设计时已经考虑到了如差分攻击等密码分析的威胁,所以还未有关于有谁 发现了能比较成功的攻击IDEA方法的结果。从这点来看,IDEA还是很安全的。
4.总结
几种算法的性能对比
算法 密钥长度 分组长度 循环次数
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8
速度:在200MHz的奔腾机上的对比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps
Celeron 1GHz的机器上AES的速度,加密内存中的数据
128bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135
安全性
1990年以来,特制的"DES Cracker"的机器可在几个小时内找出一个DES密钥。换句话说,通过测试所有可能的密钥值,此硬件可以确定用于加密信息的是哪个密钥。假设一台一秒内可找出DES密钥的机器(如,每秒试255个密钥),如果用它来找出128-bit AES的密钥,大约需要149万亿年。
四、对称加密应用 在保密通信中的应用。(保密电话) 附加内容
安全哈希算法(SHA)
由NIST开发出来的。
此算法以最大长度不超过264位的消息为输入,生成160位的消息摘要输出。主要步骤:
1. 附加填充位
2. 附加长度
3. 初始化MD缓冲区,为160位的数据
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 处理512位消息块,将缓冲虚数据和消息块共同计算出下一个输出
5. 输出160位摘要
此外还有其他哈希算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。