当前位置:首页 » 密码管理 » cc2541加密

cc2541加密

发布时间: 2022-04-15 06:17:40

Ⅰ 图片中的编码大概是用什么加密的, 里面只有数字,特殊,大写字母 明文是文本的汉字和符号与字母

不是什么加密编码都是公开的,简单说,把数据用RAR压缩算法编码后,在不告诉你的情况下你怎么解?

Ⅱ 如何给超低功耗设备供电

很多设备都是为使用低电压、低电流而设计的。如果功率过高,这些低功率设备很容易受到损坏。避免电源损坏的最佳方法是使用专为低功率应用而设计的电源。

对于更高功率的电源,即便其最小的 OCP(过流保护)值也可能还是不够低。就以最受欢迎的 120 W 台式电源为例,它的 OCP 值最小也是限制到 100 mA 或更高。低功率的设备更适合使用低功率的电源。例如,电流一旦超过 20 mA 就会损坏 LED 阵列样品。此时需要电源能够通过 CV/CC 跳变或 OCP 来限制电流,从而保护设备。

CV/CC 跳变可将电流保持在限定范围内,防止出现过流情况。消除了过流情况,电源就会回到正常的工作状态。图 1 是把电流限制在 20 mA 以下的一个简单示例。

OCP 是一种闭锁功能。一旦电流超过 20 mA,输出就会设为 0 伏并保持在零位。清除 OCP 即可重新启动输出。

输出功率较低的电源与输出功率较高的电源相比,其噪声更低。那些用于测试 LED 阵列的电源,其输出噪声通常都小于 350 uVrms。

Ⅲ 帮我看看这是什么加密方式

SAH256 和MD5都算 是摘要算法,是没法还原的,因为这两种算法生成的都是 固定长度的串,和文件大小无关,就是说一个1G的文件加密后的串是这么长,1T的文件也是这么长
目前所谓的 SAH256 和MD5 解密网站是通过大量收集文件加密后的串来比对的,比对成功即为解密成功,
前不久网上传过MD5被破解了,不过这种破解是我国的顶级密码学专家弄的,是让两个完全不一样的文件生成的MD5值一样

Ⅳ CC2540 怎么编写AES128 解密程序

可以查看 ll.h llStatus_t LL_Encrypt 加密函数 等都在该文件内

除非你知道密钥,否则,基本没戏

目前唯一一次成功的攻击就是用的旁道攻击,你可以自己去查查。

Ⅳ 在zigbee(cc2530)中添加一个加密算法,使用的是rsa算法。

你好,zigbee模块是基于51的片上soc,可以看做有通讯功能的增强单片机也有些应用另外添加低功耗单片机如msp430等通过spi控制rf收发芯片

Ⅵ 请问这个是什么加密 可以解密吗

VBScript.Encode直接搜索 VBScript.Encode替换成 VBScript.DEncode再运行就解密了

Ⅶ TP-LINK无线路由器安全加密设置哪种好WEP,WPA,WPA2(PSK),WPA2(AES)

从性能和安全性的角度来说,WPA2-PSK(AES)是最好的,一般的路由器对于该类型的加密都能游刃有余的处理,而且,WPA2-PSK(AES)是目前为止最安全,也是使用最广泛的无线加密协议

WEP是Wired Equivalent Privacy的简称,有线等效保密(WEP)协议是对在两台设备间无线传输的数据进行加密的方式,用以防止非法用户窃听或侵入无线网络。不过密码分析学家已经找出 WEP 好几个弱点,因此在2003年被 Wi-Fi Protected Access (WPA) 淘汰,又在2004年由完整的 IEEE 802.11i 标准(又称为 WPA2)所取代。
WPA全名为Wi-Fi Protected Access,有WPA和WPA2两个标准,是一种保护无线电脑网络(Wi-Fi)安全的系统,WPA实作了IEEE 802.11i标准的大部分,是在802.11i完备之前替代WEP的过渡方案。WPA的设计可以用在所有的无线网卡上,但未必能用在第一代的无线取用点上。
WPA2 是经由 Wi-Fi 联盟验证过的 IEEE 802.11i 标准的认证形式。WPA2 实现了 802.11i 的强制性元素 ,特别是 Michael 算法由公认彻底安全的 CCMP 讯息认证码所取代、而 RC4 也被 AES 取代。WPA2具备完整的标准体系,但其不能被应用在某些老旧型号的网卡上。
WPA/WPA2下的加密方式有TKIP和AES两种,TKIP: Temporal Key Integrity Protocol(临时密钥完整性协议)负责处理无线安全问题的加密部分。TKIP在设计时考虑了当时非常苛刻的限制因素:必须在现有硬件上运行,因此不能使用计算先进的加密算法。而AES(高级加密标准),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。

Ⅷ 加密算法问题

MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 1321中有详细的描述(http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IEFT提交。

Van Oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(Brute-Force Hash Function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。

算法的应用

MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:

MD5 (tanajiya.tar.gz) =

这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

算法描述

对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

在MD5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(Bits Length)将被扩展至N*512+448,即N*64+56个字节(Bytes),N为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=N*512+448+64=(N+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

MD5中有四个32位被称作链接变量(Chaining Variable)的整数参数,他们分别为:A=0x01234567,B=0x89abcdef,C=0xfedcba98,D=0x76543210。

当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。

将上面四个链接变量复制到另外四个变量中:A到a,B到b,C到c,D到d。

主循环有四轮(MD4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。

F(X,Y,Z) =(X&Y)|((~X)&Z)
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是与,|是或,~是非,^是异或)

这四个函数的说明:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。F是一个逐位运算的函数。即,如果X,那么Y,否则Z。函数H是逐位奇偶操作符。

假设Mj表示消息的第j个子分组(从0到15),<<
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<< GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<< HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<< II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<
这四轮(64步)是:

第一轮

FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二轮

GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)

第三轮

HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)

第四轮

II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)

常数ti可以如下选择:

在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将A、B、C、D分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是A、B、C和D的级联。

当你按照我上面所说的方法实现MD5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

MD5 ("") =
MD5 ("a") =
MD5 ("abc") =
MD5 ("message digest") =
MD5 ("abcdefghijklmnopqrstuvwxyz") =
MD5 ("") =

MD5 ("
01234567890") =

MD5的安全性

MD5相对MD4所作的改进:

1. 增加了第四轮;

2. 每一步均有唯一的加法常数;

3. 为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z));

4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

Ⅸ 基于CC2540的蓝牙BLE协议,用户自定义的函数是哪块

用户模式及协议栈

1.文件传输模式

文件传输模式提供两终端间的数据通信功能,可传输后缀为.xls、.ppt、.wav、.jpg和.doc的文件(但并不限于这几种),以及完整的文件夹、目录或多媒体数据流等,提供远端文件夹浏览功能。文件传输协议栈如图2所示。


完整的协议栈包括蓝牙专用协议(如连接管理协议LMP和逻辑链路控制应用协议L2CAP)以及非专用协议(如对象交换协议OBEX和用户数据报协议UDP)。设计协议和协议栈的主要原则是尽可能利用现有的各种高层协议,保证现有协议与蓝牙技术的融合以及各种应用之间的互操作,充分利用兼容蓝牙技术规范的软硬件系统。蓝牙技术规范的开放性保证了设备制造商可以自由地选用其专用协议或习惯使用的公共协议,在蓝牙技术规范基础上开发新的应用。



Android蓝牙系统分为四个层次,内核层、BlueZ库、BlueTooth的适配库、BlueTooth的JNI部分、Java框架层、应用层。下面先来分析Android的蓝牙协议栈。

Android的蓝牙协议栈采用BlueZ来实现,BlueZ分为两部分:内核代码和用户态程序及工具集。

内核代码主要由BlueZ核心协议和驱动程序组成;蓝牙协议实现在内核源代码net/bluetooth中,驱动程序位于内核源代码目录 driver/bluetooth中。用户态程序及工具集主要包括应用程序接口和BlueZ工具集,位于Android源代码目录externel /bluetooth(注:Android版本不一样,有的在externel/bluez目录下)中。

1、蓝牙协议栈

蓝牙协议栈的体系结构由底层硬件模块、中间协议层和高端应用层三部分组成。




一、底层硬件模块

组成:

链路管理协议(Link ManagerProtocol,LMP);

基带(Base Band,BB);

射频(Radio Frequency,RF)。

功能:

射频(RF)通过2.4GHz的ISM频段实现数据流的过滤和传输。

基带(BB)提供两种不同的物理链路,即同步面向连接链路(Synchronous Connection Oriented,SCO)和异步无连接链路(AsynchronousConnection Less,ACL),负责跳频和蓝牙数据,及信息帧的传输,且对所有类型的数据包提供不同层次的前向纠错码(Frequency Error Correction,FEC)或循环冗余度差错校验(CyclicRendancy Check,CRC)。

链路管理协议(LMP)负责两个或多个设备链路的建立和拆除,及链路的安全和控制,如鉴权和加密、控制和协商基带包的大小等,它为上层软件模块提供了不同的访问入口。

主机控制器接口(HostController Interface,HCI)是蓝牙协议中软硬件之间的接口,提供了一个调用下层BB、LMP、状态和控制寄存器等硬件的统一命令,上下两个模块接口之间的消息和数据的传递必须通过HCI的解释才能进行。

二、中间协议层

组成:

逻辑链路控制和适配协议(LogicalLink Control and Adaptation Protocol,L2CAP);

服务发现协议(ServiceDiscovery Protocol,SDP);

串口仿真协议(或称线缆替换协议RFCOMM);

二进制电话控制协议(TelephonyControlprotocol Spectocol,TCS)。

功能:

L2CAP位于基带(BB)之上,向上层提供面向连接的和无连接的数据服务,它主要完成数据的拆装、服务质量控制、协议的复用、分组的分割和重组,及组提取等功能。

SDP是一个基于客户/服务器结构的协议,它工作在L2CAP层之上,为上层应用程序提供一种机制来发现可用的服务及其属性,服务的属性包括服务的类型及该服务所需的机制或协议信息。

RFCOMM是一个仿真有线链路的无线数据仿真协议,符合ETSI标准的TS07.10串口仿真协议,它在蓝牙基带上仿真RS-232的控制和数据信号,为原先使用串行连接的上层业务提供传送能力。

TCS定义了用于蓝牙设备之间建立语音和数据呼叫的控制信令(Call Control Signalling),并负责处理蓝牙设备组的移动管理过程。

三、高端应用层

组成:

点对点协议(Point-to-PointProtocol,PPP);

传输控制协议/网络层协议(TCP/IP);

用户数据包协议(UserDatagram Protocol,UDP);

对象交换协议(ObjectExchang Protocol,OBEX);

无线应用协议(WirelessApplication Protocol,WAP);

无线应用环境(WirelessApplication Environment,WAE);

功能:

PPP定义了串行点对点链路应当如何传输因特网协议数据,主要用于LAN接入、拨号网络及传真等应用规范。

TCP/IP、UDP定义了因特网与网络相关的通信及其他类型计算机设备和外围设备之间的通信。

OBEX支持设备间的数据交换,采用客户/服务器模式提供与HTTP(超文本传输协议)相同的基本功能。可用于交换的电子商务卡、个人日程表、消息和便条等格式。

WAP用于在数字蜂窝电话和其他小型无线设备上实现因特网业务,支持移动电话浏览网页、收取电子邮件和其他基于因特网的协议。

WAE提供用于WAP电话和个人数字助理(PersonalDigital Assistant,PDA)所需的各种应用软件。

2、android与蓝牙协议栈的关系

蓝牙系统的核心是BlueZ,因此JNI和上层都围绕跟BlueZ的沟通进行。JNI和android应用层,跟BlueZ沟通的主要手段是D- BUS,这是一套被广泛采用的IPC通信机制,跟Android框架使用的Binder类似。BlueZ以D-BUS为基础,给其他部分提供主要接口。

热点内容
商城网站免费源码 发布:2025-05-17 00:13:09 浏览:703
制图什么配置电脑够用 发布:2025-05-17 00:12:58 浏览:368
安卓root之后怎么屏蔽弹窗 发布:2025-05-16 23:54:01 浏览:978
领克01如何存储歌曲 发布:2025-05-16 23:53:23 浏览:343
新社保初始密码是多少 发布:2025-05-16 23:53:13 浏览:940
安卓手机应用怎么恢复到桌面 发布:2025-05-16 23:53:09 浏览:610
sql替换特殊字符 发布:2025-05-16 23:48:02 浏览:805
安卓手机怎么改苹果服 发布:2025-05-16 23:46:28 浏览:471
如何新建一个文件夹 发布:2025-05-16 23:46:27 浏览:926
i7900k配置什么样显卡 发布:2025-05-16 23:34:50 浏览:926