当前位置:首页 » 编程软件 » 交叉编译概念

交叉编译概念

发布时间: 2022-05-28 03:42:55

A. 交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别

一. 什么是ABI和EABI
1) ABI: 二进制应用程序接口(Application Binary Interface (ABI) for the ARM Architecture)
在计算机中,应用二进制接口描述了应用程序(或者其他类型)和操作系统之间或其他应用程序的低级接口.
ABI涵盖了各种细节,如:
数据类型的大小、布局和对齐;
调用约定(控制着函数的参数如何传送以及如何接受返回值),例如,是所有的参数都通过栈传递,还是部分参数通过寄存器传递;哪个寄存器用于哪个函数参数;通过栈传递的第一个函数参数是最先push到栈上还是最后;
系统调用的编码和一个应用如何向操作系统进行系统调用;
以及在一个完整的操作系统ABI中,目标文件的二进制格式、程序库等等。
一个完整的ABI,像Intel二进制兼容标准 (iBCS) ,允许支持它的操作系统上的程序不经修改在其他支持此ABI的操作体统上运行。
ABI不同于应用程序接口(API),API定义了源代码和库之间的接口,因此同样的代码可以在支持这个API的任何系统中编译,ABI允许编译好的目标代码在使用兼容ABI的系统中无需改动就能运行。

2) EABI: 嵌入式ABI
嵌入式应用二进制接口指定了文件格式、数据类型、寄存器使用、堆积组织优化和在一个嵌入式软件中的参数的标准约定。
开发者使用自己的汇编语言也可以使用EABI作为与兼容的编译器生成的汇编语言的接口。
支持EABI的编译器创建的目标文件可以和使用类似编译器产生的代码兼容,这样允许开发者链接一个由不同编译器产生的库。
EABI与关于通用计算机的ABI的主要区别是应用程序代码中允许使用特权指令,不需要动态链接(有时是禁止的),和更紧凑的堆栈帧组织用来节省内存。广泛使用EABI的有Power PC和ARM.

二. gnueabi相关的两个交叉编译器: gnueabi和gnueabihf
在debian源里这两个交叉编译器的定义如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可见这两个交叉编译器适用于armel和armhf两个不同的架构, armel和armhf这两种架构在对待浮点运算采取了不同的策略(有fpu的arm才能支持这两种浮点运算策略)

其实这两个交叉编译器只不过是gcc的选项-mfloat-abi的默认值不同. gcc的选项-mfloat-abi有三种值soft,softfp,hard(其中后两者都要求arm里有fpu浮点运算单元,soft与后两者是兼容的,但softfp和hard两种模式互不兼容):
soft : 不用fpu进行浮点计算,即使有fpu浮点运算单元也不用,而是使用软件模式。
softfp : armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。
hard : armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换, 性能最好,但是中断负荷高。

三. 拓展阅读
下文阐述了ARM代码编译时的软浮点(soft-float)和硬浮点(hard-float)的编译以及链接实现时的不同。从VFP浮点单元的引入到软浮点(soft-float)和硬浮点(hard-float)的概念

VFP (vector floating-point)
从ARMv5开始,就有可选的 Vector Floating Point (VFP) 模块,当然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不带VFP的模式供芯片厂商选择。
VFP经过若干年的发展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16个浮点寄存器,默认为32个)和VFPv3+NEON (如大多数的Cortex-A8芯片) 。对于包含NEON的ARM芯片,NEON一般和VFP公用寄存器。

硬浮点Hard-float
编译器将代码直接编译成发射给硬件浮点协处理器(浮点运算单元FPU)去执行。FPU通常有一套额外的寄存器来完成浮点参数传递和运算。
使用实际的硬件浮点运算单元FPU当然会带来性能的提升。因为往往一个浮点的函数调用需要几个或者几十个时钟周期。

软浮点 Soft-float
编译器把浮点运算转换成浮点运算的函数调用和库函数调用,没有FPU的指令调用,也没有浮点寄存器的参数传递。浮点参数的传递也是通过ARM寄存器或者堆栈完成。
现在的Linux系统默认编译选择使用hard-float,即使系统没有任何浮点处理器单元,这就会产生非法指令和异常。因而一般的系统镜像都采用软浮点以兼容没有VFP的处理器。

armel ABI和armhf ABI
在armel中,关于浮点数计算的约定有三种。以gcc为例,对应的-mfloat-abi参数值有三个:soft,softfp,hard。
soft是指所有浮点运算全部在软件层实现,效率当然不高,会存在不必要的浮点到整数、整数到浮点的转换,只适合于早期没有浮点计算单元的ARM处理器;
softfp是目前armel的默认设置,它将浮点计算交给FPU处理,但函数参数的传递使用通用的整型寄存器而不是FPU寄存器;
hard则使用FPU浮点寄存器将函数参数传递给FPU处理。
需要注意的是,在兼容性上,soft与后两者是兼容的,但softfp和hard两种模式不兼容。
默认情况下,armel使用softfp,因此将hard模式的armel单独作为一个abi,称之为armhf。
而使用hard模式,在每次浮点相关函数调用时,平均能节省20个CPU周期。对ARM这样每个周期都很重要的体系结构来说,这样的提升无疑是巨大的。
在完全不改变源码和配置的情况下,在一些应用程序上,使用armhf能得到20%——25%的性能提升。对一些严重依赖于浮点运算的程序,更是可以达到300%的性能提升。

Soft-float和hard-float的编译选项
在CodeSourcery gcc的编译参数上,使用-mfloat-abi=name来指定浮点运算处理方式。-mfpu=name来指定浮点协处理的类型。
可选类型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等价于-mhard-float) -mfpu=vfp来选择编译成硬浮点。使用-mfloat-abi=softfp就能兼容带VFP的硬件以及soft-float的软件实现,运行时的连接器ld.so会在执行浮点运算时对于运算单元的选择,
是直接的硬件调用还是库函数调用,是执行/lib还是/lib/vfp下的libm。-mfloat-abi=soft (等价于-msoft-float)直接调用软浮点实现库。

在ARM RVCT工具链下,定义fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.

定义浮点运算类型
–fpmode ieee_full : 所有单精度float和双精度double的精度都要和IEEE标准一致,具体的模式可以在运行时动态指定;
–fpmode ieee_fixed : 舍入到最接近的实现的IEEE标准,不带不精确的异常;
–fpmode ieee_no_fenv :舍入到最接近的实现的IEEE标准,不带异常;
–fpmode std :非规格数flush到0、舍入到最接近的实现的IEEE标准,不带异常;
–fpmode fast : 更积极的优化,可能会有一点精度损失。

B. 嵌入式系统开发为什么要采用交叉编译的方式

由于宿主机和目标机的体系结构不同,在宿主机X86平台上可以运行的程序在目标机ARM平台上无法运行,因此嵌入式软件开发采用交叉编译方式在一个平台上生成可以在另一个平台上执行的代码。编译的最主要的工作就是将程序转化成运行该程序的CPU所能识别的机器代码。
进行交叉编译的主机称为宿主机,也就是普通的通用计算机,宿主机系统资源丰富,使用方便地集成开发环境和调试工具等。

程序实际运行的环境称为目标机,也就是嵌入式系统环境。

C. 单片机的开发也属于交叉编译吧

交叉编译
由于计算机的指令集与ARM上的指令集不一样。所以当程序能正常在PC上执行时,不一定能正常地在ARM上执行。
一般交叉编译的过程是这样的:PC调试的程序 =====> 调试可用,通过交叉编译器将代码指令转换成对应的ARM平台代码指令 ====> 移植到ARM平台上使用。

而单片机的过程也有些像。你像这类高深的问题不会出现在单片机上。其实你要明白什么是编译。
编译就是将 高级的语言转换成机器能识别的语言。这个过程就叫编译。
单片机的C语言在平台上能运行,是因为有仿真软件。而经过编译之后,就变成单片机能执行的代码了。
而ARM不一样。PC中Linux下,程序也能执行,但不是仿真。他是真正的运行。但你移植到ARM平台就不一定能执行,需要转化代码的指令。这个转换过程你可以当成是交叉编译。

其实说白了吧。没多大区别,就是转换成他们能执行的代码就对了。但只是单片机不这样叫。因为单片机的代码是没办法直接在PC上跑的。只能通过仿真软件跑。

希望我的回答对你有所帮助。

D. 如何交叉编译openjdk 使之能在arm-Linux中运行

直接下载OpenJDK8源码肯定不通过。有一个专门的移植工程:

hg clone http://hg.openjdk.java.net/aarch64-port/jdk8/

hg clone http://hg.openjdk.java.net/aarch64-port/jdk8u/


这个有时无法下载,使用:

https://github.com/AdoptOpenJDK/openjdk-aarch64-jdk8u

关于OpenJDK的编译,这个博客记录最为详细,所有问题都有解决办法:

网页链接

E. 解释“linux交叉编译环境”这个概念,要具体专业点,用专业术语解释,考试的一道问答题来的,谢谢

交叉编译器是一种可以在平台A上为另一种平台B编译程序的编译器。其中,运行交叉编译器的平台A称为宿主机,交叉编译生成的目标文件的运行平台B称为目标机。交叉编译器的编译过程称为交叉编译。
一个完整的arm-linux交叉编译器包括arm-linux-gcc、glibc、binutils等组件。其中,arm-linux-gcc是为ARM平台编译C程序的编译器;glibc是嵌入式C程序所需的基本函数库;binutils包含一组二进制工具。所以交叉编译器又称为交叉编译工具链。
由于交叉编译器中每个组件都有各自的版本,所以可以使用不同版本的组件来制作交叉编译器。但是,组件之间会因版本不匹配的问题二产生错误。为了避免这种麻烦,建议直接使用制作好的arm-linux交叉编译器。
另外,团IDC网上有许多产品团购,便宜有口碑

F. 如何在linux中运行交叉编译的程序

这里需要注意的是所谓平台,实际上包含两个概念:
体系结构(Architecture)、操作系统(Operating
System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。
方法及步骤:
1、搭建交叉编译环境
选...

G. linux嵌入式中的静态交叉编译是什么意思

应该说是分为静态和动态的

静态就是把需要的库文件也直接编译进去

动态则是在需要的时候才去调用,本身不编译进去

H. 交叉编译器为什么叫交叉编译交叉

交叉编译这个概念的出现和流行是和嵌入式系统的广泛发展同步的。我们常用的计算机软件,都需要通过编译的方式,把使用高级计算机语言编写的代码(比如C代码)编译(compile)成计算机可以识别和执行的二进制代码。比如,我们在Windows平台上,可使用Visual C++开发环境,编写程序并编译成可执行程序。这种方式下,我们使用PC平台上的Windows工具开发针对Windows本身的可执行程序,这种编译过程称为native compilation,中文可理解为本机编译。
然而,在进行嵌入式系统的开发时,运行程序的目标平台通常具有有限的存储空间和运算能力,比如常见的 ARM 平台,其一般的静态存储空间大概是16到32MB,而CPU的主频大概在100MHz到500MHz之间。这种情况下,在ARM平台上进行本机编译就不太可能了,这是因为一般的编译工具链(compilation tool chain)需要很大的存储空间,并需要很强的CPU运算能力。
为了解决这个问题,交叉编译工具就应运而生了。通过交叉编译工具,我们就可以在CPU能力很强、存储空间足够的主机平台上(比如PC上)编译出针对其他平台的可执行程序。
要进行交叉编译,我们需要在主机平台上安装对应的交叉编译工具链(cross compilation tool chain),然后用这个交叉编译工具链编译我们的源代码,最终生成可在目标平台上运行的代码。

I. 为什么要用交叉编译器

交叉编译,简单地说,就是在一个平台上生成另一个平台上的可执行代码。这里需要注意的是所谓平台,实际上包含两个概念:体系结构(Architecture)、操作系统(Operating System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。

有时是因为目的平台上不允许或不能够安装我们所需要的编译器,而我们又需要这个编译器的某些特征;有时是因为目的平台上的资源贫乏,无法运行我们所需要编译器;有时又是因为目的平台还没有建立,连操作系统都没有,根本谈不上运行什么编译器。
综上,在嵌入式开发的时候我们就要使用交叉编译器。

J. 什么是交叉编译,为什么要使用交叉编译

交叉编译的概念(来自网络):

简单地说,就是在一个平台上生成另一个平台上的可执行代码。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。
举个例子:
我们在Linux系统比如Ubuntu上编写的C程序完全可以拿到Windows系统上正常运行。

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:645
制作脚本网站 发布:2025-10-20 08:17:34 浏览:936
python中的init方法 发布:2025-10-20 08:17:33 浏览:632
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:821
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:731
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1066
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:299
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:160
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:852
python股票数据获取 发布:2025-10-20 07:39:44 浏览:763