当前位置:首页 » 编程软件 » 遗传算法交叉编译原理

遗传算法交叉编译原理

发布时间: 2022-06-01 04:39:38

Ⅰ 遗传算法的基本原理

遗传算法的基本原理和方法

一、编码

编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。

解码(译码):遗传算法解空间向问题空间的转换。

二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。

二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。

编码方法:

1、 二进制编码方法

缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则

2、 格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。

4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。

5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。

评估编码的三个规范:完备性、健全性、非冗余性。

二、选择

遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。

常用的选择算子:

1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。

4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。

7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

三、交叉

遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

适用于二进制编码个体或浮点数编码个体的交叉算子:

1、单点交叉(One-pointCrossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。

2、两点交叉与多点交叉:

(1) 两点交叉(Two-pointCrossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。

(2) 多点交叉(Multi-pointCrossover)

3、均匀交叉(也称一致交叉,UniformCrossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。

4、算术交叉(ArithmeticCrossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。

四、变异

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。

以下变异算子适用于二进制编码和浮点数编码的个体:

1、基本位变异(SimpleMutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

2、均匀变异(UniformMutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

3、边界变异(BoundaryMutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。

Ⅱ 遗传算法中为什么要用交叉算子

因为交叉算子可以有助于将优良个体的染色体片段遗传给后代,同时交叉算子一般起全局搜索的作用,可以开采未知的空间。

Ⅲ 请问,遗传算法中的交叉编译概率在编写子函数时为啥要在rand(1)小于概...

遗传算法中的交叉变异概率在编子函数时,应该是rand(1)产生的随机数小于交叉率pc,或交叉率pm才能进行交叉变异操作。
因为遗传算法中,交叉变异操作是以一定的交叉率pc和一定的变异率pm执行的。所以首先选择参与交叉或变异操作的个体进入到交配池,选择过程是随机选择的,即满足rand(1)
<pc或rand(1)
<pm才被选择

Ⅳ 遗传算法的核心是什么!

遗传操作的交叉算子。

在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。

交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。

(4)遗传算法交叉编译原理扩展阅读

评估编码策略常采用以下3个规范:

a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。

b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。

c)非冗余性(nonrendancy):染色体和候选解一一对应。

目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。

而二进制编码是目前遗传算法中最常用的编码方法。即是由二进制字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。

Ⅳ 遗传算法交叉操作

for i = 1 : 2 : Size-1%个体两两交叉,不重复
temp = rand;%随机交叉概率值
if Pc > temp%%若随机交叉概率值满足交叉概率,则进行交叉
alfa = rand;%交叉算子
TempE(i,:) = alfa*E(i+1,:) + (1-alfa)*E(i,:);%无条件交叉
TempE(i+1,:) = alfa*E(i,:) + (1-alfa)*E(i+1,:);%无条件交叉
end
end

从程序可以看出,当两个个体满足交叉概率后每个基因即进行无条件交叉,应属于多点交叉的范畴。

Ⅵ 遗传算法中的交叉算子具体怎么实现~跪求文字描述以及算法描述~。详细点

交叉算子分好几种,有单点交叉、两点交叉、多点交叉、融合交叉、均匀交叉等,最简单的是单点交叉,假设个体的长度为N,那么就随机产生一个(1,N)范围内的整数r,然后将要交叉的两个母代个体从r这个地方截为两段,交换母代个体的后半段,就产生了新子代个体。这就是简单的单点交叉。详细可以看《遗传算法——理论、应用与软件实现》这本书中对交叉算子的介绍。参考资料是一个简单遗传算法的C代码及介绍。

Ⅶ 遗传算法中保证和不变的交叉方法

通过选择。
(2)图式的阶和长度
图式中0和1的个数称为图式的阶、遗传算法的特点
1.遗传算法从问题解的中集开始嫂索。对于图式H=1x x0x x,以及进一步研究开发;这是一个强烈的滤波过程。对于问题求解角度来讲.,网络的分析,最关心的是遗传算法在神经网络的应用。神经网络由于有分布存储等特点,这时只能靠变异产生新的个体;往往也称为问题的“环境”、遗传算法的步骤和意义
1.初始化
选择一个群体,或者最优个体的适应度和群体适应度不再上升时。
一,变异增加了全局优化的特质。
(2)适应度较小的个体:
1.选择(Selection)
这是从群体中选择出较适应环境的个体,利于全局择优,它通过进化和遗传机理。
4.变异
根据生物遗传中基因变异的原理,从中选择出较适应环境的“染色体”进行复制。
这说明遗传算法是采用随机方法进行最优解搜索.25-0,2;甚至被淘汰,给出一群“染色体”、变异操作得出最优结构,则算法的迭代过程收敛。
4.遗传算法中的选择。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络,有f(bi);然后才能以选择;然后,还需要进一步研究其数学基础理论,首先是要解决网络结构的编码问题,i=1。这种方法与自然界生物地生长进化相一致,*}表示。
通常以随机方法产生串或个体的集合bi。

图3-7 遗传算法原理
1。这个初始的群体也就是问题假设解的集合。
2.选择
根据适者生存原则选择下一代的个体,则有
S#39,选择体现了向最优解迫近,则称为一个因式,即把1变为0。这时,太大则容易破坏高适应值的结构。在串bi中,最后就会收敛到最适应环境的一个“染色体”上,i=1:网络的学习。
(3)Holland图式定理
低阶,由遗传算法对这些生长语法规则不断进行改变;=001111
单靠变异不能在求解中得到好处,对执行变异的串的对应位求反,遗传算法可用于网络的学习,这是问题求解品质的测量函数.,才能对这种算法深入了解。它的有关内容如下,即群体大小n,变异过程产生更适应环境的新一代“染色体”群。图式中第1位数字和最后位数字间的距离称为图式的长度,然后产生网络的结构,而是把一些简单的生长语法规则编码入“染色体”中,收敛速度下降。
这样,随机地选择两个个体的相同位置,则f(bi)称为个体bi的适应度。遗传算法从串集开始搜索,交叉是无法产生新的个体的.01-0。一般对进化后的优化“染色体”进行分析;或者个体的适应度的变化率为零;还需研究硬件化的遗传算法;并且是一个并行滤波机制;其中*可以是0或1,并用0(H)表示。
遗传算法的原理可以简要给出如下,但无法精确确定最扰解位置。否则。
图3—7中表示了遗传算法的执行过程。串长度及编码形式对算法收敛影响极大,编码包括网络层数、遗传算法的应用关键
遗传算法在应用中最关键的问题有如下3个
1.串的编码方式
这本质是问题编码;有
bi∈{0.75。一般把问题的各种参数用二进制编码,网络的结构设计。并且,2。例如.n,对群体执行的操作有三种;从神经网络研究的角度上考虑。
这是遗传算法与传统优化算法的极大区别。也就是说、交叉和变异都是随机操作。适应度准则体现了适者生存,状态分析。通过对“染色体”的优化就实现了对网络的优化,1,“染色体”实质上和神经网络是一种映射关系,一代一代地进化。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构;还需要在理论上证明它与其它优化技术的优劣及原因,从而产生新的个体。在选中的位置实行交换:
(1)适应度较高的个体,i=1.3 遗传算法的应用
遗传算法在很多领域都得到应用。
(2)参数化编码法
参数化编码采用的编码较为抽象。由于在选择用于繁殖下一代的个体时。它说明遗传算法其内在具有并行处理的特质;但有时需要另行构造,遗传算法有很高的容错能力。编码方法主要有下列3种。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构。以

(3-86)为选中bi为下一代个体的次数。遗传算法可对神经网络进行功能分析。
显然.从式(3—86)可知。因为在所有的个体一样时。这个过程反映了随机信息交换;最后,交叉幌宰P,遗传算法的参数选择尚未有定量方法;其次、遗传算法在神经网络中的应用
遗传算法在神经网络中的应用主要反映在3个方面,…。
一:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在变量多,太大使遗传算法成了单纯的随机搜索、变异操作能迅速排除与最优解相差极大的串,有0(H)=2。交叉时,:
考虑对于一群长度为L的二进制编码bi,用经过选择。
二。变异概率Pm太小时难以产生新的基因结构;f(bi)lt,并按适者生存的原则.,并用δ(H)表示,以适应度为选择原则,繁殖下一代的数目较少。故有时也称这一操作为再生(Reproction).2、遗传算法的目的
典型的遗传算法CGA(Canonical Genetic Algorithm)通常用于解决下面这一类的静态最优化问题,目前也还有各种不足,把0变为1。
很明显。
3.遗传算法有极强的容错能力
遗传算法的初始串集本身就带有大量与最优解甚远的信息,不断进化产生新的解。
群体大小n太小时难以求出最优解。
3.变异(Mutation)
这是在选中的个体中:
choose an intial population
determine the fitness of each indivial
perform selection
repeat
perform crossover
perform mutation
determine the fitness of each indivial
perform selection
until some stopping criterion applies
这里所指的某种结束准则一般是指个体的适应度达到给定的阀值。然后。首先。一般n=30-160。故而,取值范围大或无给定范围时。在变异时.,再通过交叉。在遗传算法应用中,如果某位基因为1。一般取Pm=0.01—0.2、变异所得到的新一代群体取代上一代群体;∞
同时
f(bi)≠f(bi+1)
求满足下式
max{f(bi)bi∈{0。
2.遗传算法求解时使用特定问题的信息极少。
3.遗传算法自身参数设定
遗传算法自身参数有3个。
三,Pm的取值较小,n,4位置的基因进行变异,繁殖下一代的数目较多。
2.适应函数的确定
适应函数(fitness function)也称对象函数(object function),交叉体现了最优解的产生。
由于遗传算法使用适应值这一信息进行搜索,可找到最优解附近,构成子串。对遗传算法.n,以变异概率Pm对某些个体的某些位执行变异,在执行遗传算法之前。变异概率Pm与生物变异极小的情况一致。取值为0,灵活应用,并不需要问题导数等与问题直接相关的信息、交叉。
5.全局最优收敛(Convergence to the global optimum)
当最优个体的适应度达到给定的阀值,并且
0lt,也即是假设解。遗传算法只需适应值和串编码等通用信息,每代处理的图式数目为0(n3)。当群体的大小为n时。
5.遗传算法具有隐含的并行性
遗传算法的基础理论是图式定理,也即产生新的个体,变异体现了全局最优解的复盖,遗传算法是一种最优化方法,就产生了对环境适应能力较强的后代。
例如有个体S=101011,短长度的图式在群体遗传过程中将会按指数规律增加,而不是确定的精确规则:
(1)图式(Schema)概念
一个基因串用符号集{0,太大则增长收敛时间、交叉,并且也展示了它潜力和宽广前景,即选择一个串或个体的集合bi。一般可以把问题的模型函数作为对象函数,容易形成通用算法程序,按交叉概率P、算法结束,从给出的原始解群中,复盖面大,…。
3.交叉
对于选中用于繁殖下一代的个体。
遗传算法这种处理能力称为隐含并行性(Implicit Parallelism).2 遗传算法的原理
遗传算法GA把问题的解表示成“染色体”,一般难以从其拓扑结构直接理解其功能。这些选中的个体用于繁殖下一代。
2.交叉(Crossover)
这是在选中用于繁殖下一代的个体中,可实行单点交叉或多点交叉,2,而不是从单个解开始。
遗传算法虽然可以在多种领域都有实际应用,并返回到第2步即选择操作处继续循环执行、遗传算法的基本原理
长度为L的n个二进制串bi(i=1,故几乎可处理任何问题,每个二进制位就是个体染色体的基因。但是1,最后生成适合所解的问题的神经网络;但是;反亦反之,性质分析。问题的最优解将通过这些初始假设解进化而求出,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化。在选择时,也称为初始群体.75,2。在每个串中、交叉。一般取Pc=0,对两个不同的个体的相同位置的基因进行交换、各层互连方式等信息,产生变异时就是把它变成0,1}L (3-84)
给定目标函数f;然后把子串拼接构成“染色体”串,就是选择出和最优解较接近的中间解,所以、每层神经元数。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度,一般取0;目的在于产生新的基因组合,是根据个体对环境的适应度而决定其繁殖量的,在遗传算法中,故而有时也称为非均匀再生(differential reproction),即求出最优解,从而提高学习速率、交叉概率Pc和变异概率Pm。
对其的第1:H=1x x 0 x x是一个图式,δ(H)=4,它就是问题的最优解。一般取n=30-160.25—0。
1.遗传算法在网络学习中的应用
在神经网络中,最后收敛到一个特定的串bi处。交叉概率Pc太小时难以向前搜索;容易误入局部最优解。二。
给出目标函数f。
例如有个体
S1=100101
S2=010111
选择它们的左边3位进行交叉操作。传统优化算法是从单个初始值迭代求最优解的,n)组成了遗传算法的初解群,则有
S1=010101
S2=100111
一般而言,应先明确其特点和关键问题,它能保证算法过程不会产生无法进化的单一群体,不适应者淘汰的自然法则。根据进化术语。这样。
三,,对个体中的某些基因执行异向转化,1}L} (3-85)
的bi,把这些假设解置于问题的“环境”中,在算法中也即是以二进制编码的串,遗传算法还有大量的问题需要研究

Ⅷ 遗传算法怎么回事

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型: 遗传算法式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。b)个体评价:计算群体P(t)中各个个体的适应度。c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算

Ⅸ 遗传算法中,十进制杂交谁能个举个例子讲解一下

十进制的交叉方式有两种,一种是转换为二进制交叉,交叉好后再转为十进制;另一种是十进制直接交叉。

直接交叉就是利用交叉公式(运算公式)进行计算,以下为可选公式,分为十进制整型(变量不连接可调)和实型(变量连续可调)两种。

两个个体(个体长度为n)的十进制交叉过程如下:

1)设定交叉概率Pc;

2)随机生成【0,1】间的数b,若b<Pc,则两个进行交叉,转3),否则判断另外两个个体是否交叉;

3)采用随机多点交叉方式(可以选择单点交叉和固定多点交叉,方法类似),随机生成含n个0,1的向量y, y的每个元素对应于个体的基因(十进制数),y中为1的位置两个十进制数按上述公式进行交叉;

4)两个个体交叉完成,转入下两个个体的交叉。


例子:

设某两个个体为

X1=[1.0132, 0.9543, 0.9888, 5, 6]

X2=[1.0224, 0.9611, 0.9754, 3, 8]

直接进入步骤3),假设生成的序列y为[1,0,0,0,1],则说明第1个和最后一个基因进行交叉,即1.0132和1.0224按以上实型公式交叉,6和8按以上整型公式交叉:

随机生成a,假设生成的a=0.65

1.0132的更新值为:0.65*1.0132+(1-0.65)*1.0224=1.01642

1.0224的更新值为:0.65*1.0224+(1-0.65)*1.0132=1.01918

随机生成另外的a,假设为a=0.6(是否需要另外生成,需要对比生成与不生成两种情况下最优解的好坏来选择)

6的更新值为:0.6*6+(1-0.6)*8=6.8,向下取整后为6

8的更新值为:0.6*8+(1-0.6)*6=7.2,向下取整后为7

因此交叉后X1和X2变为:

X1=[1.01642, 0.9543, 0.9888, 5, 6]

X2=[1.01918, 0.9611, 0.9754, 3, 7]

以此类推。

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:645
制作脚本网站 发布:2025-10-20 08:17:34 浏览:936
python中的init方法 发布:2025-10-20 08:17:33 浏览:632
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:821
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:731
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1066
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:299
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:160
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:852
python股票数据获取 发布:2025-10-20 07:39:44 浏览:763