当前位置:首页 » 编程软件 » hbase编程

hbase编程

发布时间: 2022-06-07 05:49:50

⑴ 基于HBase的推荐系统的背景

摘要 支撑OLAP应用中的各

⑵ hbase是什么工具

将数据导入HBase中有如下几种方式:使用HBase的API中的Put方法使用HBase 的bulk load 工具使用定制的MapRece Job方式 使用HBase的API中的Put是最直接的方法,用法也很容易学习。但针对大部分情况,它并非都是最高效的方式。当需要将海量数据在规定时间内载入HBase中时,效率问题体现得尤为明显。待处理的数据量一般都是巨大的,这也许是为何我们选择了HBase而不是其他数据库的原因。在项目开始之前,你就该思考如何将所有能够很好的将数据转移进HBase,否则之后可能面临严重的性能问题。 HBase有一个名为 bulk load的功能支持将海量数据高效地装载入HBase中。Bulk load是通过一个MapRece Job来实现的,通过Job直接生成一个HBase的内部HFile格式文件来形成一个特殊的HBase数据表,然后直接将数据文件加载到运行的集群中。使用bulk load功能最简单的方式就是使用importtsv 工具。importtsv 是从TSV文件直接加载内容至HBase的一个内置工具。它通过运行一个MapRece Job,将数据从TSV文件中直接写入HBase的表或者写入一个HBase的自有格式数据文件。尽管importtsv 工具在需要将文本数据导入HBase的时候十分有用,但是有一些情况,比如导入其他格式的数据,你会希望使用编程来生成数据,而MapRece是处理海量数据最有效的方式。这可能也是HBase中加载海量数据唯一最可行的方法了。当然我们可以使用MapRece向HBase导入数据,但海量的数据集会使得MapRece Job也变得很繁重。若处理不当,则可能使得MapRece的job运行时的吞吐量很小。在HBase中数据合并是一项频繁执行写操作任务,除非我们能够生成HBase的内部数据文件,并且直接加载。这样尽管HBase的写入速度一直很快,但是若合并过程没有合适的配置,也有可能造成写操作时常被阻塞。写操作很重的任务可能引起的另一个问题就是将数据写入了相同的族群服务器(region server),这种情况常出现在将海量数据导入到一个新建的HBase中。一旦数据集中在相同的服务器,整个集群就变得不平衡,并且写速度会显着的降低。我们将会在本文中致力于解决这些问题。我们将从一个简单的任务开始,使用API中的Put方法将MySQL中的数据导入HBase。接着我们会描述如何使用 importtsv 和 bulk load将TSV数据文件导入HBase。我们也会有一个MapRece样例展示如何使用其他数据文件格式来导入数据。上述方式都包括将数据直接写入HBase中,以及在HDFS中直接写入HFile类型文件。本文中最后一节解释在向HBase导入数据之前如何构建好集群。本文代码均是以java编写,我们假设您具有基本Java知识,所以我们将略过如何编译与打包文中的Java示例代码,但我们会在示例源码中进行注释。

⑶ hbase的特点

hbase的特点:高可靠性、高性能、面向列、可伸缩的。

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

(3)hbase编程扩展阅读

访问接口:

1. Native Java API,最常规和高效的访问方式,适合Hadoop MapRece Job并行批处理HBase表数据

2. HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3. Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据

4. REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5. Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapRece Job来处理HBase表数据,适合做数据统计。

⑷ Hadoop HBASE shell编程中 所有指令提示提示无效参数

你在while[xxx]之前将while中括号内的东西(xxx)打印一下看就明白了:
echo xxx
可能原因是其中有参数带有特殊字符,如”[”、“]“等,你可以这样引用参数:
while [ ${var} = ${var2} ]
do
...
如果还可能有空串的话,这样万无一失:
while [ ”X${var}“ = "X${var2}" ]
do
...
X是随便拼上去的一个字符,目的就是保证你那个串不会是空的

⑸ 如何使用java api操作hbase

一般情况下,我们使用Linux的shell命令,就可以非常轻松的操作Hbase,例如一些建表,建列簇,插值,显示所有表,统计数量等等,但有时为了提高灵活性,我们也需要使用编程语言来操作Hbase,当然Hbase通过Thrift接口提供了对大多数主流编程语言的支持,例如C++,PHP,Python,Ruby等等,那么本篇,散仙给出的例子是基于Java原生的API操作Hbase,相比其他的一些编程语言,使用Java操作Hbase,会更加高效一些,因为Hbase本身就是使用Java语言编写的。转载
下面,散仙给出源码,以供参考:

package com.hbase;

import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.util.Bytes;

/**
* @author 三劫散仙
*
* **/
public class Test {

static Configuration conf=null;
static{

conf=HBaseConfiguration.create();//hbase的配置信息
conf.set("hbase.zookeeper.quorum", "10.2.143.5"); //zookeeper的地址

}

public static void main(String[] args)throws Exception {

Test t=new Test();
//t.createTable("temp", new String[]{"name","age"});
//t.insertRow("temp", "2", "age", "myage", "100");
// t.getOneDataByRowKey("temp", "2");
t.showAll("temp");

}

/***
* 创建一张表
* 并指定列簇
* */
public void createTable(String tableName,String cols[])throws Exception{
HBaseAdmin admin=new HBaseAdmin(conf);//客户端管理工具类
if(admin.tableExists(tableName)){
System.out.println("此表已经存在.......");
}else{
HTableDescriptor table=new HTableDescriptor(tableName);
for(String c:cols){
HColumnDescriptor col=new HColumnDescriptor(c);//列簇名
table.addFamily(col);//添加到此表中
}

admin.createTable(table);//创建一个表
admin.close();
System.out.println("创建表成功!");
}
}

/**
* 添加数据,
* 建议使用批量添加
* @param tableName 表名
* @param row 行号
* @param columnFamily 列簇
* @param column 列
* @param value 具体的值
*
* **/
public void insertRow(String tableName, String row,
String columnFamily, String column, String value) throws Exception {
HTable table = new HTable(conf, tableName);
Put put = new Put(Bytes.toBytes(row));
// 参数出分别:列族、列、值
put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column),
Bytes.toBytes(value));

table.put(put);
table.close();//关闭
System.out.println("插入一条数据成功!");
}

/**
* 删除一条数据
* @param tableName 表名
* @param row rowkey
* **/
public void deleteByRow(String tableName,String rowkey)throws Exception{
HTable h=new HTable(conf, tableName);
Delete d=new Delete(Bytes.toBytes(rowkey));
h.delete(d);//删除一条数据
h.close();
}

/**
* 删除多条数据
* @param tableName 表名
* @param row rowkey
* **/
public void deleteByRow(String tableName,String rowkey[])throws Exception{
HTable h=new HTable(conf, tableName);

List<Delete> list=new ArrayList<Delete>();
for(String k:rowkey){
Delete d=new Delete(Bytes.toBytes(k));
list.add(d);
}
h.delete(list);//删除
h.close();//释放资源
}

/**
* 得到一条数据
*
* @param tableName 表名
* @param rowkey 行号
* ***/
public void getOneDataByRowKey(String tableName,String rowkey)throws Exception{
HTable h=new HTable(conf, tableName);

Get g=new Get(Bytes.toBytes(rowkey));
Result r=h.get(g);
for(KeyValue k:r.raw()){

System.out.println("行号: "+Bytes.toStringBinary(k.getRow()));
System.out.println("时间戳: "+k.getTimestamp());
System.out.println("列簇: "+Bytes.toStringBinary(k.getFamily()));
System.out.println("列: "+Bytes.toStringBinary(k.getQualifier()));
//if(Bytes.toStringBinary(k.getQualifier()).equals("myage")){
// System.out.println("值: "+Bytes.toInt(k.getValue()));
//}else{
String ss= Bytes.toString(k.getValue());
System.out.println("值: "+ss);
//}

}
h.close();

}

/**
* 扫描所有数据或特定数据
* @param tableName
* **/
public void showAll(String tableName)throws Exception{

HTable h=new HTable(conf, tableName);

Scan scan=new Scan();
//扫描特定区间
//Scan scan=new Scan(Bytes.toBytes("开始行号"),Bytes.toBytes("结束行号"));
ResultScanner scanner=h.getScanner(scan);
for(Result r:scanner){
System.out.println("==================================");
for(KeyValue k:r.raw()){

System.out.println("行号: "+Bytes.toStringBinary(k.getRow()));
System.out.println("时间戳: "+k.getTimestamp());
System.out.println("列簇: "+Bytes.toStringBinary(k.getFamily()));
System.out.println("列: "+Bytes.toStringBinary(k.getQualifier()));
//if(Bytes.toStringBinary(k.getQualifier()).equals("myage")){
// System.out.println("值: "+Bytes.toInt(k.getValue()));
//}else{
String ss= Bytes.toString(k.getValue());
System.out.println("值: "+ss);
//}

}
}
h.close();

}

}

显示所有数据的打印输出如下:

==================================
行号: 1
时间戳: 1385597699287
列簇: name
列: myname
值: 秦东亮
==================================
行号: 2
时间戳: 1385598393306
列簇: age
列: myage
值: 100
行号: 2
时间戳: 1385597723900
列簇: name
列: myname
值: 三劫散仙

由此,可以看出Hbase的对外的API提供接口,是非常简单易用的。

⑹ hbase实战 hbase权威指南哪本好书

《HBase原理与实践》、《HBase实战》、《HBase权威指南》、《HBase企业应用开发实战》、《HBase入门与实践》。以上书籍都是与hbase相关的专业性书籍,作者由浅入深地介绍了hbase的技术与应用。

5、《HBase入门与实践》:全书共分为3个部分。前两个部分分别介绍了分布式系统和大规模数据处理的发展历史;第三部分通过真实的应用和代码示例以及支持这些实践技巧的理论知识,进一步探索HBase的一些实用技术。

热点内容
编程stata 发布:2025-05-19 19:12:18 浏览:513
解压命令gz 发布:2025-05-19 19:11:37 浏览:823
linux下的程序开发 发布:2025-05-19 18:55:02 浏览:927
该文件夹未包含 发布:2025-05-19 18:54:17 浏览:195
安卓拳皇对战用哪个平台 发布:2025-05-19 18:42:39 浏览:531
华为畅玩5怎么取消锁屏密码 发布:2025-05-19 18:42:38 浏览:583
linuxrm文件夹 发布:2025-05-19 18:40:25 浏览:973
谭浩强c语言错误 发布:2025-05-19 18:39:33 浏览:952
安卓和苹果用流量哪个划算 发布:2025-05-19 18:38:04 浏览:409
安卓手机怎么设定背景墙 发布:2025-05-19 18:29:40 浏览:1002