51单片机步进电机编程
Ⅰ 51单片机,如何给一个指令控制步进电机转动90度,再给另外一个指令,反转90度回位
1、首先看看步进驱动器的细分设定,找出转动一圈需要的脉冲个数,再计算出转动90°需要的脉冲个数N;
2、根据接线,使单片机的IO端口输出高电平或低电平,控制转动方向;
3、根据需求的转动速度,设定定时器的定时常数,启动定时;
4、在定时器的中断程序中,取反IO端口,如CPL P1.1,并计数。使单片机输出N个脉冲即可。
5、如需要反向,参考第二步。
Ⅱ 51单片机驱动带有驱动器的步进电机C语言编程
#include<reg51.h>
#defineucharunsignedchar
sbitkey=P3^2;
sbitdir=P0^3;
sbitpluse=P0^2;
sbiten=P0^4;
voiddelay(inta)
{
while(a--);
}
main()
{
uchari;
en=0;
pluse=0;
while(1)
{
if(key==0)
{
delay(1000);
if(key==0);
{
while(key==0);
for(i=0;i<200;i++)
{
dir=0;
en=1;
pluse=~pluse;
delay(800);
}
}
}
dir=1;
en=0;
pluse=0;
}
}
Ⅲ 51单片机C语言程序按键控制步进电机转速
sbit K1=P1^0;
sbit K2=P1^1;
char y=0;
while(1)
{
pangan();
for(i=0;i<4;i++) //4相
{
/*P1=F_Rotation[i]; //输出对应的相 可以自行换成反转表格
Delay(500); //改变这个参数可以调整电机转速
Delay(5000);*/
P1=B_Rotation[i];
Delay(265+y);
P1=F_Rotation[i];
Delay(265+y);
}
}
void pangan()
{
if(K1==0)
{ y++; //加
while(~k1)
}
if(K2==0)
{ y--;
while(~k2); //减
}
}
}
没有下上限 要是调的话 需要判断显示延时时间
Ⅳ 单片机控制步进电动机的运动的原理及单片机程序
51单片步进电机控制原理与控制设计程序
51单片步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称vr)、永磁式步进电机(简称pm)和混合式步进电机(简称hb)。
51单片步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
51单片步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。其基本原理作用如下:
(1)控制换相顺序
通电换相这一过程称为脉冲分配。例如:三相步进电机的三拍工作方式,其各相通电顺序为a-b-c-d,通电控制脉冲必须严格按照这一顺序分别控制a,b,c,d相的通断。
(2)控制步51单片进电机的转向
如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
(3)控制51单片步进电机的速度
如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
Ⅳ 用51单片机控制3个步进电机时的程序!越详细越好。
程序是指基本指令,通过范围内的修改达到使用目的。
一个步进电机控制器和3个步进电机的控制器只是脉冲输出点位不一样而已(芯片不一样)当然,输出的IO点也会增加,3个步进电机的控制器可以控制1~3个步进电机不同的工作,基于51单片机的开发代码指令和软件由芯片生产商提供,基础代码由控制器工程师提供,一款产品是基于硬件和软件的结合,开发者一般从硬件设计开始,如果你可以提供控制器硬件,我相信软件就会非常简单。
程序其实就是写代码,和PLC接近,但比PLC复杂,因为PLC是开放式的。
下面是我们的三轴控制器。
三轴运动控制器简介
控制器的功能:
⑴ 显示屏分辨率可选两种128×64点、192×64点单色图形屏(黄绿屏或蓝屏),分别可显示16×16标准点阵汉字4行8列、4行12列。
⑵ 内置蜂鸣器,可以通过软件配合按键发声,或做报警等其他通途。
⑶ 控制器须外接DC5V工作电源。如果系统要用到模拟量输出(0~10VDC)功能,则需要外部的±12VDC电源。
⑷ 用宏晶STC12C系列高性能CPU,同时钟频率下,运算速度比其他51系列CPU快8~12倍。
⑸ 64KB程序空间,8KB + 256KB数据空间,带实时日历时钟。
⑹ 自带512KB字库,含16×16点阵汉字、16×16点阵字符、8×16点阵ASCII字符、12×12点阵汉字、12×12点阵字符、6×12点阵ASCII字符。两种汉字字库均包含全部一、二级汉字。
⑺ 19个按键,其中6个按键上可配有LED指示灯。LED指示灯可单独控制亮暗,和按键本身不直接关联,用于系统中一些常用功能选择之用。
⑻ 3轴运动控制,脉冲+方向,差分输出,最大脉冲频率50KHz,极强的抗干扰能力。也可以接成共阳极输出,系统有+5V输出端子。16位脉冲计数,也可无限发脉冲。
⑼ 2路AB相输入解码。
⑽ 20路DI输入,12~24VDC共阳极。
⑾ 16路DO输出,晶体管输出,可以外接继电器等,外接继电器等感性负载时,须在继电器线圈两端并联反向二极管。
⑿ 支持RS232、RS485通信。
⒀ 串口下载,宏晶官方提供的下载软件。
⒁ 开发环境是KEIL公司的C51开发平台μVision3,也可以自行在网上升级更高版本。
⒂ 开发库是C51格式的库文件。
DFC111.h---------------------------------------基本头文件
DFC_MU102_Sys.h---------------------------系统头文件
DFC_MU102_SYS.LIB---------------------------系统库文件
DFC_MU102_LCD.h------------------------LCD控制头文件
DFC_MU102_LCD.Lib------------------------LCD控制库文件
DFC_MU102_KB19.h------------------------按键控制头文件
DFC_MU102_KB19.Lib------------------------按键控制库文件
DFC_IO111.h------------------------------输入输出头文件
DFC_IO111.Lib------------------------------输入输出库文件
Ⅵ 51单片机, 编一个控制步进电机转动的程序。
#include <reg51.h> //51芯片管脚定义头文件
#include <intrins.h>//内部包含延时函数 _nop_();
#define uchar unsigned char
#define uint unsigned int
uchar code FFW[8]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9};
uchar code REV[8]={0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1};
/********************************************************/
/*
/* 延时t毫秒
/* 11.0592MHz时钟,延时约1ms
/*
/********************************************************/
void delay(uint t)
{
uint k;
while(t--)
{
for(k=0; k<125; k++)
{ }
}
}
/********************************************************/
/*
/*步进电机正转
/*
/********************************************************/
void motor_ffw(uint n)
{
uchar i;
uint j;
for (j=0; j<12*n; j++) //转1×n圈
{
for (i=0; i<8; i++) //一个周期转30度
{
P1 = FFW[i]; //取数据
delay(15); //调节转速
}
}
}
/********************************************************/
/*
/*步进电机反转
/*
/********************************************************/
void motor_rev(uint n)
{
uchar i;
uint j;
for (j=0; j<12*n; j++) //转1×n圈
{
for (i=0; i<8; i++) //一个周期转30度
{
P1 = REV[i]; //取数据
delay(15); //调节转速
}
}
}
/********************************************************
*
* 主程序
*
*********************************************************/
main()
{
while(1)
{
motor_ffw(5); //电机正转
delay(5000); //换向延时
//motor_rev(5); //电机反转
//delay(1000); //换向延时
}
}
/********************************************************/
Ⅶ 一个51单片机同时控制2个步进电机的C语言程序
#include<reg52.h>
#include<intrins.h>
#define mode 0x81 // 方式0,A口、B口输出,C口高4位输出,低4位输入
# include "stdio.h"
# include "string.h"
# include "math.h"
xdata unsigned char PA _at_ 0x7f00;
xdata unsigned char PB _at_ 0x7f01;
xdata unsigned char PC _at_ 0x7f02;
xdata unsigned char caas _at_ 0x7f03; //控制字
sbit P32=P3^2;
sbit P33=P3^3;
sbit P35=P3^5;
#define uchar unsigned char
#define uint unsigned int
unsigned char h,Pos ;
unsigned int R,NX,NY;
unsigned char key;
code unsigned char KeyTable[] = { // 键码定义
0x0f, 0x0b, 0x07, 0x03,
0x0e, 0x0a, 0x06, 0x02,
0x0d, 0x09, 0x05, 0x01,
0x0c, 0x08, 0x04, 0x00
};
code unsigned char LEDMAP[] = { // 八段管显示码
0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,
0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71
};
unsigned char Code_ ; // 字符代码寄存器
#define PD1 61 // 122/2 分成左右两半屏(122x32)
unsigned char Column;
unsigned char Page_ ; // 页地址寄存器 D1,DO:页地址
unsigned char Code_ ; // 字符代码寄存器
unsigned char Command; // 指令寄存器
unsigned char LCDData; // 数据寄存器
xdata unsigned char CWADD1 _at_ 0x1cff; // 写指令代码地址(E1)
xdata unsigned char DWADD1 _at_ 0x1eff; // 写显示数据地址(E1)
xdata unsigned char CRADD1 _at_ 0x1dff; // 读状态字地址(E1)
xdata unsigned char DRADD1 _at_ 0x1fff; // 读显示数据地址(E1)
xdata unsigned char CWADD2 _at_ 0x3cff; // 写指令代码地址(E2)
xdata unsigned char DWADD2 _at_ 0x3eff; // 写显示数进地址(E2)
xdata unsigned char CRADD2 _at_ 0x3dff; // 读状态字地址(E2)
xdata unsigned char DRADD2 _at_ 0x3fff; // 读显示数据地址(E2)
//----------------------液晶-----------------
// 清屏
// ************************ 中文显示程序 ***********************************/
/*************************直线 插 补***************************8*/
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=50;y>0;y--);
}
void zhengx()
{
PA=0x00;
delay(10);
PA=0x01;
delay(10);
}
void fux()
{
PA=0x02;
delay(10);
PA=0x03;
delay(10);
}
void zhengy()
{
PB=0x00;
delay(10);
PB=0x10;
delay(10);
}
void fuy()
{
PB=0x20;
delay(10);
PB=0x30;
delay(10);
}
void xian(int NX,int NY)
{int FM, NXY, XOY,ZF,z;
FM=0;
{if(NX>0)
if(NY>0)
XOY=1;
else
XOY=4;
else
if(NY>0)
XOY=2;
else
XOY=3;}
for(NXY= fabs(NX) + fabs(NY)-1;NXY>=0&&P32!=0&&P33!=0;NXY--)
{ {if(NX>0)
if(NY>0)
XOY=1;
else
XOY=4;
else
if(NY>0)
XOY=2;
else
XOY=3;}
for(NXY= fabs(NX) + fabs(NY)-1;NXY>=0;NXY--)
{ if(FM>=0)
{if(XOY==1||XOY==4)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();
}
FM=FM-fabs(NY);
}
else
{if(XOY==1||XOY==2)
{
ZF=3;
zhengy();
}
else
{ZF=4;
fuy();
}
FM=FM+fabs(NX);
}
}
for(z=0;z<200;z++)
{P35 = 0;
delay(10);
P35 = 1;
delay(10);
}
}
}
/*************************圆 弧 插 补***************************8*/
void yuanhu1( int X0,int Y0, int NX, int NY ,int RNS )
{
int NXY,BS,ZF,XM,YM,z;
int FM=0;
BS=fabs(NX-X0) + fabs(NY-Y0);
XM=fabs(X0);
YM=fabs(Y0);
for(NXY= fabs(NX-X0) + fabs(NY-Y0)-1;NXY>=0&&P32!=0&&P33!=0;NXY--)
{
if(RNS==1||RNS==3||RNS==6||RNS==8)
{
if(FM<0)
{
if(RNS==1||RNS==8)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();}
FM=FM+2*fabs(XM)+1;
XM=XM+1;
}
else
{
if(RNS==1||RNS==6)
{
ZF=3;
fuy();
}
else
{ZF=4;
zhengy();
}
FM=FM-2*fabs(YM)+1;
YM=YM-1;
}
}
else
if(FM>=0)
{
if(RNS==2||RNS==7)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();
}
FM=FM-2*fabs(XM)+1;
XM=XM-1;
}
else
{
if(RNS==2||RNS==5)
{ZF=3;
zhengy();}
else
{ZF=4;
fuy();}
FM=FM+2*fabs(YM)+1;
YM=YM+1;
}
}
if(P32==0||P33==0)
{
for(z=0;z<200;z++)
{P35 = 0;
delay(10);
P35 = 1;
delay(10);
}
}
}
int shu1 ()
{
int i=0,j=0,k=3;
while (1)
{
if(testkey())
{ delay(300);
delay1();
if(testkey())
{ j=getkey();
if(j!=14)
{i=i*10 + j;
k--;}
}}
if(k==0)
break;
}
return i;
}
int shu2 ()
{
int i=0,j=0,k=3;
while (1)
{
if(testkey())
{ delay(300);
delay1();
if(testkey())
{ j=getkey();
if(j!=14)
{i=i*10 + j;
k--;}
}}
if(k==0)
break;
}
return i;
}
void yuanhuchabu1()
{ int q=0;
delay(300);
R=shu1();
yj1();
q=R/100;
Page_ = 0x00;
Column = 0x35;
Code_ = q;
WriteCHN8x16();
q=R%100;
q=q/10;
Page_ = 0x00;
Column = 0x40;
Code_ = q;
WriteCHN8x16();
q=R%10;
Page_ = 0x00;
Column = 0x48;
Code_ = q;
WriteCHN8x16();
yuanhu1(R,0,0,R,5);
yuanhu1(0,R,-R,0,6);
yuanhu1(-R,0,0,-R,7);
yuanhu1(0,-R,R,0,8);
}
void yuanhuchabu2()
{ int q=0;
delay(300);
R=shu1();
yj1();
q=R/100;
Page_ = 0x00;
Column = 0x35;
Code_ = q;
WriteCHN8x16();
q=R%100;
q=q/10;
Page_ = 0x00;
Column = 0x40;
Code_ = q;
WriteCHN8x16();
q=R%10;
Page_ = 0x00;
Column = 0x48;
Code_ = q;
WriteCHN8x16();
yuanhu1(0,R,R,0,1);
yuanhu1(R,0,0,-R,4);
yuanhu1(0,-R,-R,0,3);
yuanhu1(-R,0,0,R,2);
}
void xianchabu()
{ int q1=0,q2=0;
delay(300);
NX=shu1();
delay(300);
NY=shu2();
yj2();
Page_ = 0x00;
Column = 0x25;
Code_ = 0x10;
WriteCHN8x16();
q1=NX/100;
Page_ = 0x00;
Column = 0x30;
Code_ = q1;
WriteCHN8x16();
q1=NX%100;
q1=q1/10;
Page_ = 0x00;
Column = 0x37;
Code_ = q1;
WriteCHN8x16();
q1=NX%10;
Page_ = 0x00;
Column = 0x40;
Code_ = q1;
WriteCHN8x16();
q2=NY/100;
Page_ = 0x00;
Column = 0x50;
Code_ =q1;
WriteCHN8x16();
q2=NY%100;
q2=q2/10;
Page_ = 0x00;
Column = 0x58;
Code_ = q2;
WriteCHN8x16();
q2=NY%10;
Page_ = 0x00;
Column = 0x60;
Code_ = q2;
WriteCHN8x16();
Page_ = 0x00;
Column = 0x72;
Code_ = 0x11;
WriteCHN8x16();
xian(NX,NY );
}
void main()
{ int q=0,q1=0,q2=0;
caas=mode;
PA=0X00;
PB=0X00;
PC=0x00;
R=0X00;
while(1)
{
if(testkey())
{
delay1();
if(testKey())
{ delay1();
if(getkey()==15)
{
delay(300);
yuanhuchabu1();
}
else if(getkey()==10)
{ delay(300);
yuanhuchabu2();
}
else if(getkey()==13)
{
xianchabu();
}
else if(getkey()==1)
{
zhengx();
}
else if(getkey()==2)
{
fux();
}
else if(getkey()==3)
{
zhengy();
} else if(getkey()==4)
{
fuy();
}
}
}
if(GetKey()==12)
{ break;}
}
}
Ⅷ 求51单片机脉冲+方向控制步进电机编程,使用4相5线步进电机,请高手指点,重酬
步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
Ⅸ 求51单片机控制步进电机程序
给你一段电机走一步的函数吧!
/***************************************************************************************************
函数名:步进电机正反转一步
调 用:MOTOR()
参 数:Mot=0,电机反转一步 ,Mot=1电机正转
返回值:无
结 果:电机坐标 Motor 自动加一或减一,电机走一步
***************************************************************************************************/
void MOTOR(void){ //步进电机正反转一步子程序
code unsigned char MOTOR_DB[]={0x00,0xb0,0x90,0xd0,0x50,0x70,0x60,0xe0,0xa0,0x00};//定义电机输出编码
unsigned char i;
MOIC=0; //开电机电流
i=0; //电机输出编码初值设00
CBB=10; //设减小电机电流时间设为10
if(Mot==1)Mo_data++;
else{if(Mo_data!=0)Mo_data--;}//如果电机反转,并且当前电机坐标不小于1时,坐标减一
while(1)
{
if(Mot)Motor_t ++;//当前电机输出编码加一指向下一编码
else Motor_t --;//电机输出编码减一
i=MOTOR_DB[Motor_t]; //取电机输出编码
if(i!=0)break;
else{
if(Mot)Motor_t=0;
else Motor_t=9;
}
}
i=i&0xf8; //屏蔽低3位,高5位不变
M_data=M_data&0x07;//屏蔽P1口的高5位,低3位不变
M_data=M_data|i; //高5位送P1口,P1口的低3位不变
}
Ⅹ 如何用51单片机控制4个步进电机同时工作
用单片机同时是不可能的,当然,时间间隔小到可以接受,跑几个任务,那也可以视为同时。要实现真正意义上的同时,用FPGA/CPLD是可以完成的。
话说回来,也许你的同时并不是说一定严格地同时工作,只是说一个单片机去控制四个步进电机,那就好办多了。
一个步进电机,比如4相5线那种,4个IO口可控制一个,四个步进电机就要16个,驱动芯片用ULN2003即可。
当然,如果你的IO口不允许使用这么多,那也可以通过串转并的方法,扩展IO口,比如用74HC595,三根IO口控制它,它可以级联,三根线可以控制很多片。一片为8位,两片就为16位,3片为24位 …… 只要加些三极管驱动那三根控制线,三个IO口可控制一串级联的74HC595,得到的扩展IO口,那是相当多的。我用三个IO口控制过5片74HC595,三个IO口一下子就扩展成了40个IO口!!!