fedoralinux怎么建立交叉编译
这个过程如下
1. 下载源文件、补丁和建立编译的目录
2. 建立内核头文件
3. 建立二进制工具(binutils)
4. 建立初始编译器(bootstrap gcc)
5. 建立c库(glibc)
6. 建立全套编译器(full gcc)
下载源文件、补丁和建立编译的目录
1. 选定软件版本号
选择软件版本号时,先看看glibc源代码中的INSTALL文件。那里列举了该版本的glibc编译时所需的binutils 和gcc的版本号。例如在 glibc-2.2.3/INSTALL 文件中推荐 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我选的各个软件的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你选的glibc的版本号低于2.2,你还要下载一个叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 内核你可以从www.kernel.org 或它的镜像下载。
Binutils、gcc和glibc你可以从FSF的ftp站点ftp://ftp.gun.org/gnu/ 或它的镜像去下载。在编译glibc时,要用到 Linux 内核中的 include 目录的内核头文件。如果你发现有变量没有定义而导致编译失败,你就改变你的内核版本号。例如我开始用linux-2.4.25+vrs2,编译glibc-2.2.3 时报 BUS_ISA 没定义,后来发现在 2.4.23 开始它的名字被改为 CTL_BUS_ISA。如果你没有完全的把握保证你改的内核改完全了,就不要动内核,而是把你的 Linux 内核的版本号降低或升高,来适应 glibc。
Gcc 的版本号,推荐用 gcc-2.95 以上的。太老的版本编译可能会出问题。Gcc-2.95.3 是一个比较稳定的版本,也是内核开发人员推荐用的一个 gcc 版本。
如果你发现无法编译过去,有可能是你选用的软件中有的加入了一些新的特性而其他所选软件不支持的原因,就相应降低该软件的版本号。例如我开始用 gcc-3.3.2,发现编译不过,报 as、ld 等版本太老,我就把 gcc 降为 2.95.3。太新的版本大多没经过大量的测试,建议不要选用。
2. 建立工作目录
首先,我们建立几个用来工作的目录:
在你的用户目录,我用的是用户liang,因此用户目录为 /home/liang,先建立一个项目目录embedded。
$pwd
/home/liang
$mkdir embedded
再在这个项目目录 embedded 下建立三个目录 build-tools、kernel 和 tools。
build-tools-用来存放你下载的 binutils、gcc 和 glibc 的源代码和用来编译这些源代码的目录。
kernel-用来存放你的内核源代码和内核补丁。
tools-用来存放编译好的交叉编译工具和库文件。
$cd embedded
$mkdir build-tools kernel tools
执行完后目录结构如下:
$ls embedded
build-tools kernel tools
3. 输出和环境变量
我们输出如下的环境变量方便我们编译。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH
如果你不惯用环境变量的,你可以直接用绝对或相对路径。我如果不用环境变量,一般都用绝对路径,相对路径有时会失败。环境变量也可以定义在.bashrc文件中,这样当你logout或换了控制台时,就不用老是export这些变量了。
体系结构和你的TAEGET变量的对应如下表
你可以在通过glibc下的config.sub脚本来知道,你的TARGET变量是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu
在我的环境中,config.sub 在 glibc-2.2.3/scripts 目录下。
网上还有一些 HOWTO 可以参考,ARM 体系结构的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 体系结构的《Linux for PowerPC Embedded Systems HOWTO》等。对TARGET的选取可能有帮助。
4. 建立编译目录
为了把源码和编译时生成的文件分开,一般的编译工作不在的源码目录中,要另建一个目录来专门用于编译。用以下的命令来建立编译你下载的binutils、gcc和glibc的源代码的目录。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch
build-binutils-编译binutils的目录
build-boot-gcc-编译gcc 启动部分的目录
build-glibc-编译glibc的目录
build-gcc-编译gcc 全部的目录
gcc-patch-放gcc的补丁的目录
gcc-2.95.3 的补丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以从 http://www.linuxfromscratch.org/ 下载到这些补丁。
再将你下载的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代码放入 build-tools 目录中
看一下你的 build-tools 目录,有以下内容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz
建立内核头文件
把你从 www.kernel.org 下载的内核源代码放入 $PRJROOT /kernel 目录
进入你的 kernel 目录:
$cd $PRJROOT /kernel
解开内核源代码
$tar -xzvf linux-2.4.21.tar.gz
或
$tar -xjvf linux-2.4.21.tar.bz2
小于 2.4.19 的内核版本解开会生成一个 linux 目录,没带版本号,就将其改名。
$mv linux linux-2.4.x
给 Linux 内核打上你的补丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2
编译内核生成头文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 来代替 menuconfig,但这样用可能会没有设置某些配置文件选项和没有生成下面编译所需的头文件。推荐大家用 make menuconfig,这也是内核开发人员用的最多的配置方法。配置完退出并保存,检查一下的内核目录中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,这是编译 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也说明了你生成了正确的头文件。
还要建立几个正确的链接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc
接下来为你的交叉编译环境建立你的内核头文件的链接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm
也可以把 Linux 内核头文件拷贝过来用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include
建立二进制工具(binutils)
binutils是一些二进制工具的集合,其中包含了我们常用到的as和ld。
首先,我们解压我们下载的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2
然后进入build-binutils目录配置和编译binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX
--target 选项是指出我们生成的是 arm-linux 的工具,--prefix 是指出我们可执行文件安装的位置。
会出现很多 check,最后产生 Makefile 文件。
有了 Makefile 后,我们来编译并安装 binutils,命令很简单。
$make
$make install
看一下我们 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size
我们来解释一下上面生成的可执行文件都是用来干什么的
add2line - 将你要找的地址转成文件和行号,它要使用 debug 信息。
Ar-产生、修改和解开一个存档文件
As-gnu 的汇编器
C++filt-C++ 和 java 中有一种重载函数,所用的重载函数最后会被编译转化成汇编的标号,c++filt 就是实现这种反向的转化,根据标号得到函数名。
Gasp-gnu 汇编器预编译器。
Ld-gnu 的连接器
Nm-列出目标文件的符号和对应的地址
Obj-将某种格式的目标文件转化成另外格式的目标文件
Objmp-显示目标文件的信息
Ranlib-为一个存档文件产生一个索引,并将这个索引存入存档文件中
Readelf-显示 elf 格式的目标文件的信息
Size-显示目标文件各个节的大小和目标文件的大小
Strings-打印出目标文件中可以打印的字符串,有个默认的长度,为4
Strip-剥掉目标文件的所有的符号信息
建立初始编译器(bootstrap gcc)
首先进入 build-tools 目录,将下载 gcc 源代码解压
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz
然后进入 gcc-2.95.3 目录给 gcc 打上补丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in
在我们编译并安装 gcc 前,我们先要改一个文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
这一行改为
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果没定义 -Dinhibit,编译时将会报如下的错误
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
❷ 如何为嵌入式开发建立交叉编译环境
下面我们将以建立针对arm的交叉编译开发环境为例来解说整个过程,其他的体系结构与这个相类似,只要作一些对应的改动。我的开发环境是,宿主机 i386-redhat-7.2,目标机 arm。
这个过程如下
1. 下载源文件、补丁和建立编译的目录
2. 建立内核头文件
3. 建立二进制工具(binutils)
4. 建立初始编译器(bootstrap gcc)
5. 建立c库(glibc)
6. 建立全套编译器(full gcc)
下载源文件、补丁和建立编译的目录
1. 选定软件版本号
选择软件版本号时,先看看glibc源代码中的INSTALL文件。那里列举了该版本的glibc编译时所需的binutils 和gcc的版本号。例如在 glibc-2.2.3/INSTALL 文件中推荐 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我选的各个软件的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你选的glibc的版本号低于2.2,你还要下载一个叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 内核你可以从www.kernel.org 或它的镜像下载。
Binutils、gcc和glibc你可以从FSF的FTP站点ftp://ftp.gun.org/gnu/ 或它的镜像去下载。 在编译glibc时,要用到 Linux 内核中的 include 目录的内核头文件。如果你发现有变量没有定义而导致编译失败,你就改变你的内核版本号。例如我开始用linux-2.4.25+vrs2,编译glibc-2.2.3 时报 BUS_ISA 没定义,后来发现在 2.4.23 开始它的名字被改为 CTL_BUS_ISA。如果你没有完全的把握保证你改的内核改完全了,就不要动内核,而是把你的 Linux 内核的版本号降低或升高,来适应 glibc。
Gcc 的版本号,推荐用 gcc-2.95 以上的。太老的版本编译可能会出问题。Gcc-2.95.3 是一个比较稳定的版本,也是内核开发人员推荐用的一个 gcc 版本。
如果你发现无法编译过去,有可能是你选用的软件中有的加入了一些新的特性而其他所选软件不支持的原因,就相应降低该软件的版本号。例如我开始用 gcc-3.3.2,发现编译不过,报 as、ld 等版本太老,我就把 gcc 降为 2.95.3。 太新的版本大多没经过大量的测试,建议不要选用。
回页首
2. 建立工作目录
首先,我们建立几个用来工作的目录:
在你的用户目录,我用的是用户liang,因此用户目录为 /home/liang,先建立一个项目目录embedded。
$pwd
/home/liang
$mkdir embedded
再在这个项目目录 embedded 下建立三个目录 build-tools、kernel 和 tools。
build-tools-用来存放你下载的 binutils、gcc 和 glibc 的源代码和用来编译这些源代码的目录。
kernel-用来存放你的内核源代码和内核补丁。
tools-用来存放编译好的交叉编译工具和库文件。
$cd embedded
$mkdir build-tools kernel tools
执行完后目录结构如下:
$ls embedded
build-tools kernel tools
3. 输出和环境变量
我们输出如下的环境变量方便我们编译。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH
如果你不惯用环境变量的,你可以直接用绝对或相对路径。我如果不用环境变量,一般都用绝对路径,相对路径有时会失败。环境变量也可以定义在.bashrc文件中,这样当你logout或换了控制台时,就不用老是export这些变量了。
体系结构和你的TAEGET变量的对应如下表
你可以在通过glibc下的config.sub脚本来知道,你的TARGET变量是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu
在我的环境中,config.sub 在 glibc-2.2.3/scripts 目录下。
网上还有一些 HOWTO 可以参考,ARM 体系结构的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 体系结构的《Linux for PowerPC Embedded Systems HOWTO》等。对TARGET的选取可能有帮助。
4. 建立编译目录
为了把源码和编译时生成的文件分开,一般的编译工作不在的源码目录中,要另建一个目录来专门用于编译。用以下的命令来建立编译你下载的binutils、gcc和glibc的源代码的目录。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch
build-binutils-编译binutils的目录
build-boot-gcc-编译gcc 启动部分的目录
build-glibc-编译glibc的目录
build-gcc-编译gcc 全部的目录
gcc-patch-放gcc的补丁的目录
gcc-2.95.3 的补丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以从 http://www.linuxfromscratch.org/ 下载到这些补丁。
再将你下载的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代码放入 build-tools 目录中
看一下你的 build-tools 目录,有以下内容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz
回页首
建立内核头文件
把你从 www.kernel.org 下载的内核源代码放入 $PRJROOT /kernel 目录
进入你的 kernel 目录:
$cd $PRJROOT /kernel
解开内核源代码
$tar -xzvf linux-2.4.21.tar.gz
或
$tar -xjvf linux-2.4.21.tar.bz2
小于 2.4.19 的内核版本解开会生成一个 linux 目录,没带版本号,就将其改名。
$mv linux linux-2.4.x
给 Linux 内核打上你的补丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2
编译内核生成头文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 来代替 menuconfig,但这样用可能会没有设置某些配置文件选项和没有生成下面编译所需的头文件。推荐大家用 make menuconfig,这也是内核开发人员用的最多的配置方法。配置完退出并保存,检查一下的内核目录中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,这是编译 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也说明了你生成了正确的头文件。
还要建立几个正确的链接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc
接下来为你的交叉编译环境建立你的内核头文件的链接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm
也可以把 Linux 内核头文件拷贝过来用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include
回页首
建立二进制工具(binutils)
binutils是一些二进制工具的集合,其中包含了我们常用到的as和ld。
首先,我们解压我们下载的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2
然后进入build-binutils目录配置和编译binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX
--target 选项是指出我们生成的是 arm-linux 的工具,--prefix 是指出我们可执行文件安装的位置。
会出现很多 check,最后产生 Makefile 文件。
有了 Makefile 后,我们来编译并安装 binutils,命令很简单。
$make
$make install
看一下我们 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size
我们来解释一下上面生成的可执行文件都是用来干什么的
add2line - 将你要找的地址转成文件和行号,它要使用 debug 信息。
Ar-产生、修改和解开一个存档文件
As-gnu 的汇编器
C++filt-C++ 和 java 中有一种重载函数,所用的重载函数最后会被编译转化成汇编的标号,c++filt 就是实现这种反向的转化,根据标号得到函数名。
Gasp-gnu 汇编器预编译器。
Ld-gnu 的连接器
Nm-列出目标文件的符号和对应的地址
Obj-将某种格式的目标文件转化成另外格式的目标文件
Objmp-显示目标文件的信息
Ranlib-为一个存档文件产生一个索引,并将这个索引存入存档文件中
Readelf-显示 elf 格式的目标文件的信息
Size-显示目标文件各个节的大小和目标文件的大小
Strings-打印出目标文件中可以打印的字符串,有个默认的长度,为4
Strip-剥掉目标文件的所有的符号信息
回页首
建立初始编译器(bootstrap gcc)
首先进入 build-tools 目录,将下载 gcc 源代码解压
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz
然后进入 gcc-2.95.3 目录给 gcc 打上补丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in
在我们编译并安装 gcc 前,我们先要改一个文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
这一行改为
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果没定义 -Dinhibit,编译时将会报如下的错误
../../gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
../../gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
如果没有定义 -D__gthr_posix_h,编译时会报如下的错误
In file included from gthr-default.h:1,
from ../../gcc-2.95.3/gcc/gthr.h:98,
from ../../gcc-2.95.3/gcc/libgcc2.c:3034:
../../gcc-2.95.3/gcc/gthr-posix.h:37: pthread.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
还有一种与-Dinhibit同等效果的方法,那就是在你配置configure时多加一个参数-with-newlib,这个选项不会迫使我们必须使用newlib。我们编译了bootstrap-gcc后,仍然可以选择任何c库。
接着就是配置boostrap gcc, 后面要用bootstrap gcc 来编译 glibc 库。
$cd ..; cd build-boot-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX \
>--without-headers --enable-languages=c --disable-threads
这条命令中的 -target、--prefix 和配置 binutils 的含义是相同的,--without-headers 就是指不需要头文件,因为是交叉编译工具,不需要本机上的头文件。-enable-languages=c是指我们的 boot-gcc 只支持 c 语言。--disable-threads 是去掉 thread 功能,这个功能需要 glibc 的支持。
接着我们编译并安装 boot-gcc
$make all-gcc
$make install-gcc
我们来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-gcc 、arm-linux-unprotoize、cpp 和 gcov 几个文件。
Gcc-gnu 的 C 语言编译器
Unprotoize-将 ANSI C 的源码转化为 K&R C 的形式,去掉函数原型中的参数类型。
Cpp-gnu的 C 的预编译器
Gcov-gcc 的辅助测试工具,可以用它来分析和优程序。
使用 gcc3.2 以及 gcc3.2 以上版本时,配置 boot-gcc 不能使用 --without-headers 选项,而需要使用 glibc 的头文件。
回页首
建立 c 库(glibc)
首先解压 glibc-2.2.3.tar.gz 和 glibc-linuxthreads-2.2.3.tar.gz 源代码
$cd $PRJROOT/build-tools
$tar -xvzf glibc-2.2.3.tar.gz
$tar -xzvf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
然后进入 build-glibc 目录配置 glibc
$cd build-glibc
$CC=arm-linux-gcc ../glibc-2.2.3/configure --host=$TARGET --prefix="/usr"
--enable-add-ons --with-headers=$TARGET_PREFIX/include
CC=arm-linux-gcc 是把 CC 变量设成你刚编译完的boostrap gcc,用它来编译你的glibc。--enable-add-ons是告诉glibc用 linuxthreads 包,在上面我们已经将它放入了 glibc 源码目录中,这个选项等价于 -enable-add-ons=linuxthreads。--with-headers 告诉 glibc 我们的linux 内核头文件的目录位置。
配置完后就可以编译和安装 glibc
$make
$make install_root=$TARGET_PREFIX prefix="" install
然后你还要修改 libc.so 文件
将
GROUP ( /lib/libc.so.6 /lib/libc_nonshared.a)
改为
GROUP ( libc.so.6 libc_nonshared.a)
这样连接程序 ld 就会在 libc.so 所在的目录查找它需要的库,因为你的机子的/lib目录可能已经装了一个相同名字的库,一个为编译可以在你的宿主机上运行的程序的库,而不是用于交叉编译的。
回页首
建立全套编译器(full gcc)
在建立boot-gcc 的时候,我们只支持了C。到这里,我们就要建立全套编译器,来支持C和C++。
$cd $PRJROOT/build-tools/build-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX --enable-languages=c,c++
--enable-languages=c,c++ 告诉 full gcc 支持 c 和 c++ 语言。
然后编译和安装你的 full gcc
$make all
$make install
我们再来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-g++ 、arm-linux-protoize 和 arm-linux-c++ 几个文件。
G++-gnu的 c++ 编译器。
Protoize-与Unprotoize相反,将K&R C的源码转化为ANSI C的形式,函数原型中加入参数类型。
C++-gnu 的 c++ 编译器。
到这里你的交叉编译工具就算做完了,简单验证一下你的交叉编译工具。
用它来编译一个很简单的程序 helloworld.c
#include <stdio.h>
int main(void)
{
printf("hello world\n");
return 0;
}
$arm-linux-gcc helloworld.c -o helloworld
$file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1,
dynamically linked (uses shared libs), not stripped
上面的输出说明你编译了一个能在 arm 体系结构下运行的 helloworld,证明你的编译工具做成功了。
转载仅供参考,版权属于原作者
❸ arm-linux 交叉编译环境的建立,希望有清楚的人解答,复制的闪人
是这样子的,计算机linux中原有的gcc是针对通用的X86等处理器而言的,编译出来的可执行文件是只能在通用计算机上运行的,arm也是一种处理器,只不过其指令等和X86等CPU不同,所以需要有针对arm的编译器来编译源程序,才能在arm中运行。
我在arm9下做过linux,qt编程,需要先在PC上安装linux,然后安装arm-linux-gcc,同时为了可以使用arm-linux-gcc来编译程序,需要指定环境变量,这个可以在.profile等文件中进行更改,具体办法你查一下就知道了。或者使用export命令在终端中设置环境变量。两种方法的结果有区别哦!
你想用2440的开发板的话就是arm9了,我还没找到arm9的仿真工具,但是网上已经有arm7的仿真工具。
对于arm-linux-gcc,只要你安装好并设置好了路径(环境变量)后,在一个终端中输入#arm-linux-gcc -v
那么你一般可以看到你安装的arm-linux-gcc 版本信息,到此你就可以使用它编译你的源程序,然后将生成的可执行文件下载到arm开发板中就可以运行了。
还有什么问题再说吧,我也是一个人摸索出来的,估计摸索了一个月才成功的在arm上运行了第一个自己的qt图形界面程序,祝你好运!
我的建议:
一、熟悉linux 的各种操作命令(如export)
二、学会怎么下载可执行文件到arm中
三、学会用pc控制arm上的linux
我只用过arm-linux-gcc,在你的安装文件夹下可以找到
❹ linux fedora怎么安装交叉编译
一、下载源文件 源代码文件及其版本: binutils-2.19.tar.bz2, gcc-core-4.4.4.tar.bz2 gcc-g++-4.4.4.tar.bz2 Glibc-2.7.tar.bz2 Glibc-ports-2.7.tar.bz2 Gmp-4.2.tar.bz2 mpfr-2.4.0.tar.bz2mpc-1.0.1.tar.gz Linux-2.6.25.tar.bz2
❺ 嵌入式ARM linux操作系统中如何构建交叉开发环境
这个问题相当专业了,之前我去周立功那边了解过的。
按照以下步骤进行安装:
1) 安装32位的兼容库和libncurses5-dev库
在安装交叉编译工具之前需要先安装32位的兼容库和libncurses5-dev库,安装32兼容库需要从ubuntu的源库中下载,所以需要在Linux主机系统联网的条件下,通过终端使用如下命令安装:
vmuser@Linux-host ~$sudo apt-get install ia32-libs
若Linux主机系统没有安装32位兼容库,在使用交叉编译工具的时候可能会出现错误:
-bash: ./arm-fsl-linux-gnueabi-gcc: 没有那个文件或目录
在终端中使用如下命令则可以安装libncurses5-dev库。
vmuser@Linux-host ~$sudo apt-get install libncurses5-dev
如果没有安装此库,在使用make menucofig时出现如下所示的错误:
*** Unableto find the ncurses libraries or the
*** required headerfiles.
*** 'makemenuconfig' requires the ncurses libraries.
***
Installncurses (ncurses-devel) and try again.
***
make[1]: *** [scripts/kconfig/dochecklxdialog] 错误 1
make: *** [menuconfig] 错误 2
2) 安装交叉编译工具链
将交叉编译工具“gcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2”文件通过U盘的方式拷贝到Linux主机的“/tmp”目录下,然后执行如下命令进行解压安装交叉编译工具链:
vmuser@Linux-host ~$ cd /tmp
vmuser@Linux-host ~$ sudo tar -jxvfgcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2 -C /opt/
vmuser@Linux-host /tmp$ # 输入vmuser用户的密码“vmuser”
执行完解压命令后,交叉编译工具链将被安装到“/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0”目录下。交叉编译器的具体目录是“/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin”,为了方便使用,还需将该路径添加到PATH环境变量中,其方法为:修改“/etc/profile”文件,具体操作方法如下:
在终端中输入如下指令
vmuser@Linux-host ~$ sudo vi /etc/profile # 若提示输入密码,则输入“vmuser”
用vi编辑器打开“/etc/profile”文件后,在文件末尾增加如下一行内容:
export PATH=$PATH:/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin
文件修改并保存后,再在终端中输入如下指令,更新环境变量,使设置生效。
vmuser@Linux-host ~$source /etc/profile
在终端输入arm-fsl-linux-gnueabi-并按TAB键,如果能够看到很多arm-fsl-linux-gnueabi-前缀的命令,则基本可以确定交叉编译器安装正确,如下图所示。

❻ 在linux中安装交叉编译器时的解包问题
具体操作步骤如下:
1. 下载
在GCC网站上( 3.3.1。可供下载的文件一般有两种形式:gcc-3.3.1.tar.gz和 2,只是压缩格式不一样,内容完全一致,下载其中一种即可。
2. 解压缩
根据压缩格式,选择下面相应的一种方式解包(以下的“%”表示命令行提示符):
% tar xzvf gcc-3.3.1.tar.gz
或者
% tar jxvf 2
新生成的gcc-3.3.1这个目录被称为源目录,用${srcdir}表示它。以后在出现${srcdir}的地方,应该用真实的路径来替换它。用pwd命令可以查看当前路径。
在${srcdir}/INSTALL目录下有详细的GCC安装说明,可用浏览器打开 ml阅读。
3. 建立目标目录
目标目录(用${objdir}表示)是用来存放编译结果的地方。GCC建议编译后的文件不要放在源目录${srcdir]中(虽然这样做也可以),最好单独存放在另外一个目录中,而且不能是${srcdir}的子目录。
例如,可以这样建立一个叫 gcc-build 的目标目录(与源目录${srcdir}是同级目录):
% mkdir gcc-build
% cd gcc-build
以下的操作主要是在目标目录 ${objdir} 下进行。
4. 配置
配置的目的是决定将GCC编译器安装到什么地方(${destdir}),支持什么语言以及指定其它一些选项等。其中,${destdir}不能与${objdir}或${srcdir}目录相同。
配置是通过执行${srcdir}下的configure来完成的。其命令格式为(记得用你的真实路径替换${destdir}):
% ${srcdir}/configure --prefix=${destdir} [其它选项]
例如,如果想将GCC 3.3.1安装到/usr/local/gcc-3.3.1目录下,则${destdir}就表示这个路径。
% ../gcc-3.3.1/configure --prefix=/usr/local/gcc-3.3.1 --enable-threads=posix --disable-checking --enable--long-long --host=i386-redhat-linux --with-system-zlib --enable-languages=c,c++,java
将GCC安装在/usr/local/gcc-3.3.1目录下,支持C/C++和JAVA语言,其它选项参见GCC提供的帮助说明。
5. 编译
% make
这是一个漫长的过程。
6. 安装
执行下面的命令将编译好的库文件等拷贝到${destdir}目录中(根据你设定的路径,可能需要管理员的权限):
% make install
至此,GCC 3.3.1安装过程就完成了。
6. 其它设置
GCC 3.3.1的所有文件,包括命令文件(如gcc、g++)、库文件等都在${destdir}目录下分别存放,如命令文件放在bin目录下、库文件在lib下、头文件在include下等。由于命令文件和库文件所在的目录还没有包含在相应的搜索路径内,所以必须要作适当的设置之后编译器才能顺利地找到并使用它们。
6.1 gcc、g++、gcj的设置
要想使用GCC 3.3.1的gcc等命令,简单的方法就是把它的路径${destdir}/bin放在环境变量PATH中。我不用这种方式,而是用符号连接的方式实现,这样做的好处是我仍然可以使用系统上原来的旧版本的GCC编译器。
首先,查看原来的gcc所在的路径:
% which gcc
在系统上,上述命令显示:/usr/bin/gcc。因此,原来的gcc命令在/usr/bin目录下。可以把GCC 3.3.1中的gcc、g++、gcj等命令在/usr/bin目录下分别做一个符号连接:
% cd /usr/bin
% ln -s ${destdir}/bin/gcc gcc33
% ln -s ${destdir}/bin/g++ g++33
% ln -s ${destdir}/bin/gcj gcj33
这样,就可以分别使用gcc33、g++33、gcj33来调用GCC 3.3.0的gcc、g++、gcj完成对C、C++、JAVA程序的编译了。同时,仍然能够使用旧版本的GCC编译器中的gcc、g++等命令。
❼ 如何建立Linux下的ARM交叉编译环境
首先安装交叉编译器,网络“arm-linux-gcc”就可以一个编译器压缩包。
把压缩包放到linux系统中,解压,这样就算安装好了交叉编译器。
设置编译器环境变量,具体方式网络。如打开 /etc/bash.bashrc,添加刚才安装的编译器路径 export PATH=/home/。。。/4.4.3/bin:$PATH。这样是为了方便使用,用arm-linux-gcc即可,不然既要带全路径/home//bin/arm-linux-gcc,这样不方便使用。
编译c文件。和gcc编译相似,把gcc用arm-linu-gcc代替就是了。编译出来的就可以放到arm上运行了。</ol>
❽ 如何交叉编译开源库
所谓的搭建交叉编译环境,即安装、配置交叉编译工具链。在该环境下编译出嵌入式Linux系统所需的操作系统、应用程序等,然后再上传到目标机上。
交叉编译工具链是为了编译、链接、处理和调试跨平台体系结构的程序代码。对于交叉开发的工具链来说,在文件名称上加了一个前缀,用来区别本地的工具链。例如,arm-linux-表示是对arm的交叉编译工具链;arm-linux-gcc表示是使用gcc的编译器。除了体系结构相关的编译选项以外,其使用方法与Linux主机上的gcc相同,所以Linux编程技术对于嵌入式同样适用。不过,并不是任何一个版本拿来都能用,各种软件包往往存在版本匹配问题。例如,编译内核时需要使用arm-linux-gcc-4.3.3版本的交叉编译工具链,而使用arm-linux-gcc-3.4.1的交叉编译工具链,则会导致编译失败。
那么gcc和arm-linux-gcc的区别是什么呢?区别就是gcc是linux下的C语言编译器,编译出来的程序在本地执行,而arm-linux-gcc用来在linux下跨平台的C语言编译器,编译出来的程序在目标机(如ARM平台)上执行,嵌入式开发应使用嵌入式交叉编译工具链。
工具/原料
电脑系统:win7系统。虚拟机系统:workstation6.5 。虚拟机安装的linux版本:fedora9.0。内核:linux2.6.25 。
方法/步骤
1
我使用的交叉编译工具链是arm-linux-gcc-4.4.3,把它放在linux系统的路径是图一
2
在linux系统的路径/home/song/share下放了交叉编译工具链arm-linux-gcc-4.4.3的压缩包,另一个版本的不用。有的人可能会问到怎么把这个压缩包弄到虚拟机的linux的系统的,我是通过samba服务从主机复制到虚拟机的,这里的share文件夹就是我samba服务器的工作目录,多了不说,这不是重点。
然后通过命令mkdir embedded 建立一个arm-linux-gcc的安装目录,如图二所示。当然安装路径和目录名称“embedded”可以依自己的喜好而定。
步骤阅读
然后通过命令将share文件夹下的arm-linux-gcc-4.4.3.tar.gz复制到这里的embedded文件夹下, 当然这里你也可以不进行这一步我这是为了方便以后管理,将arm-linux-gcc安装到embedded文件夹下,方便以后寻找。
然后使用tar命令:tar zxvf arm-gcc-4.4.3.tar.gz将embedded文件夹下的arm-linux-gcc-4.4.3.tar.gz解压缩安装到当前目录下
执行完解压缩命令,就已经将交叉编译工具链arm-linux-gcc-4.4.3安装到linux系统上了,这里默认安装到了图六所示的路径上。
接下来配置系统环境变量,把交叉编译工具链的路径添加到环境变量PATH中去,这样就可以在任何目录下使用这些工具。 vi /etc/profile 编辑profile文件,添加环境变量。
在profile中的位置处,添加图八所示的红线标注的一行,路径就是图六中的红线标注的路径后面加上/4.4.3/bin。
图八中的路径一定是你自己的安装路径,可以使用pwd命令查找一下那个bin目录的路径。添加完路径后,保存退出。接下来使用命令:source /etc/profile,是修改后的profile文件生效,如图九所示。
然后,使用命令:arm-linux-gcc -v查看当前交叉编译链工具的版本信息,如图九中的红线标注第③行所示。很明显 可以看到,如果不执行第②步,则查看版本信息不成功。
然后验证交叉编译工具链是否安装成功并且可以使用,如图九所示,随便找一个目录编辑一个hello源代码。
编辑好hello.c文件后,保存退出。然后使用交叉编译器对hello.c进行编译,并生成可执行文件hello
这里生成的hello文件并不能像gcc编译出来的文件那样直接使用“./hello”命令执行并显示内容 因为它是一个二进制文件,只能下载到开发板上执行!
至此,搭建交叉编译环境步骤结束。
